
A framework for comparing the security of voting schemes

Atte Juvonen

Master’s thesis
UNIVERSITY OF HELSINKI
Department of Computer Science

Helsinki, October 9, 2019

Faculty of Science Department of Computer Science

Atte Juvonen

A framework for comparing the security of voting schemes

Computer Science

Master’s thesis October 9, 2019 132

voting, elections, systems, protocols, security

We present a new framework to evaluate the security of voting schemes. We utilize the
framework to compare a wide range of voting schemes, including practical schemes in real-
world use and academic schemes with interesting theoretical properties. In the end we present
our results in a neat comparison table.

We strive to be unambiguous: we specify our threat model, assumptions and scope, we
give definitions to the terms that we use, we explain every conclusion that we draw, and we
make an effort to describe complex ideas in as simple terms as possible.

We attempt to consolidate all important security properties from literature into a coherent
framework. These properties are intended to curtail vote-buying and coercion, promote
verifiability and dispute resolution, and prevent denial-of-service attacks. Our framework may
be considered novel in that trust assumptions are an output of the framework, not an input.
This means that our framework answers questions such as ”how many authorities have to
collude in order to violate ballot secrecy in the Finnish paper voting scheme?”

ACM Computing Classification Systems (CCS):

Computers in other domains → Computing in government→ Voting / election technologies
Security and privacy→ Formal methods and theory of security→ Security requirements
Security and privacy→ Security services→ Privacy-preserving protocols

Tiedekunta — Fakultet — Faculty Laitos — Institution — Department

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Oppiaine — Läroämne — Subject

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — Övriga uppgifter — Additional information

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI

Contents
1 Introduction 1

1.1 Different types of voting schemes 2
1.2 Failure modes . 3
1.3 Trust . 4
1.4 Verifiability . 4
1.5 Disposition of this thesis . 7

2 Research approach 8
2.1 Research questions . 8
2.2 Prior work . 8
2.3 Contributions . 9
2.4 Scope limitations . 10

2.4.1 Exotic ballots . 11
2.4.2 Soundness of cryptographic building blocks 11
2.4.3 Man-in-the-middle attacks 12
2.4.4 Cost analyses . 12

2.5 Research methods . 13

3 Comparison framework 13
3.1 Goals . 14
3.2 Threat model . 14
3.3 Assumptions . 15

3.3.1 A line in the sand . 15
3.3.2 Adversaries are computationally bounded 16
3.3.3 Voters are unable to produce unique ballots 16
3.3.4 Voter registration is not vulnerable to impersonation . 17

3.4 Summary of consolidated properties 18
3.5 Confidentiality . 21

3.5.1 Ballot secrecy . 22
3.5.2 Receipt-freeness . 22
3.5.3 Coercion-resistance . 24
3.5.4 Fairness . 25

3.6 Integrity . 26
3.6.1 Individual verifiability 26
3.6.2 Universal verifiability 32
3.6.3 Eligibility verifiability 33
3.6.4 Dispute resolution . 34

3.7 Availability . 36
3.7.1 Denial-of-service resistance 36

ii

4 Building blocks of voting schemes 38
4.1 Code voting . 38
4.2 Public Bulletin Board . 39
4.3 Randomized encryption . 40
4.4 Re-encryption . 41
4.5 Threshold cryptosystem . 41
4.6 Plaintext Equivalence Test . 42
4.7 Zero-knowledge proofs . 42
4.8 Fiat-Shamir technique . 43
4.9 Designated verifier proofs . 44
4.10 Homomorphic encryption . 45
4.11 Mix networks . 46
4.12 Randomized Partial Checking 49

5 Case reviews of voting schemes 50
5.1 In-person paper voting in Finland 51
5.2 In-person paper voting with Floating Receipts 55
5.3 In-person paper voting with Prêt à Voter 61
5.4 Remote paper voting in Switzerland 68
5.5 Remote e-voting in Switzerland 70
5.6 Remote e-voting in Australia 75
5.7 Remote e-voting in Estonia 78
5.8 Remote e-voting with Helios 81
5.9 Remote e-voting with Civitas 85

6 Comparison 102
6.1 Comparison table . 103
6.2 Guidance for interpreting results 104
6.3 Key takeaways from the comparison 106
6.4 Future work . 108

Acknowledgements 108

References 109

A Opinionated advice for policymakers 119

B Opinionated thoughts on trust, verifiability and understand-
ability 120

C Blockchain and P2P voting schemes 122

D Reviews of similar prior work 126

iii

“ An election is coming. Universal peace is declared, and the
foxes have a sincere interest in prolonging the lives of the
poultry.

– George Eliot ”
1 Introduction

In recent years, politicians in many countries have been pushing towards
digitalization of voting methods, which has sparked security concerns
from both the general public and cryptography experts. Most demo-
cratic countries have a long history with traditional paper voting and it
is largely trusted by people. In contrast, electronic voting methods are
largely seen as a ”black box”.

Some concerns are related to integrity. Perhaps the greatest fear
with electronic voting is that a foreign power is able to hack the election
and manipulate the results without anybody noticing. It is not enough
to prevent manipulation and produce the correct outcome: in order to
have a stable democracy, elections must also convince people that the
outcome is correct – even the losers of the election must be convinced. [8]

Some concerns are related to confidentiality. For example, if a voter
can vote from their home, then a spouse might coerce the voter to vote
for a specific candidate [20]. As another example, some electronic voting
methods offer voters receipts which prove how they voted [2]. This
could lead to large-scale vote-buying and coercion campaigns. Voters
might be offered money to vote a certain way or they might be coerced
with threats of violence or shaming. In fact, confidentiality of elections
is considered to be so important that the right to secret elections was
declared as a fundamental human right in U.N.’s declaration of human
rights [98].

If we only cared about integrity, designing a voting scheme would
be easy: we could simply publish a list of how everyone voted. Then
everyone could verify that their vote appears on the list and that the
sum of all votes is correct. However, lack of confidentiality would lead to
aforementioned vote-buying and coercion problems. These conflicting
requirements between integrity and confidentiality make voting such a
hard problem. The good news is that there is a rich variety of voting
schemes (both paper and electronic kind) and some of them attempt to
provide the best of both worlds: confidentiality and evidence for the
integrity of the election.

1

In this thesis we present a framework for comparing the security of
voting schemes. We utilize this framework to compare a wide range
of different schemes, including practical schemes in real-world use and
academic schemes with interesting theoretical properties.

1.1 Different types of voting schemes

When trying to classify voting schemes, we identify 2 main axes of
interest:

1. Where – Is voting confined to a supervised environment?

2. How – Is the vote casted on a physical or virtual ballot?

With regards to axis 1, we define in-person voting as the kind where
voting is allowed only in specific, supervised environments like the
polling booth. Likewise, we define remote voting as the kind where
voting is allowed outside supervised environments. This distinction is
important because voting outside supervised environments is naturally
more susceptible to vote-buying and coercion [20].

With regards to axis 2, we define paper voting as the kind where
the primary mechanism for casting and tallying votes is done on paper
ballots. Likewise, we define e-voting as the kind where the primary
mechanism for casting and tallying votes is done on electronic machines.
We exclude telephone voting schemes from our scope. Note that many
schemes incorporate both elements. For example, an e-voting scheme
may produce a paper trail for auditing, or a paper vote scheme may
include electronic elements to assist in filling out the ballot. In any
case, we classify voting schemes in the following 4 categories according
to our axes of interest:

In-person paper voting In-person e-voting

Remote paper voting Remote e-voting

2

Many readers will probably associate voting schemes with govern-
mental elections. Voting schemes are also used for referendums (voting
on decisions as opposed to nominating people). Although we sometimes
use election-related terminology, everything in this thesis applies to
referendums equally well.

Voting schemes are also commonly used by many non-governmental
entities, such as corporations and student unions. In literature these
use cases are often referred to as low-coercive environments [2], because
the risks for coercion and vote-buying are perceived to be much smaller
compared to governmental elections and referendums (at least in part
because the stakes are perceived to be lower). In many cases1 these
organizations settle for remote e-voting.

Several countries have initiated small-scale experiments with remote
e-voting and at least a dozen countries currently offer remote e-voting
in low-impact2 settings. However, remote e-voting currently has high
impact in only three countries: Estonia, Switzerland and Australia.3

1.2 Failure modes

Voting schemes can succumb to both intentional and accidental failures.
In section 3 we classify these failures according to the CIA triad of con-
fidentiality, integrity and availability. Roughly speaking, confidentiality
is about protecting the secrecy of the votes, integrity is about preventing
manipulation of the tally, and availability is about successfully running
an election from beginning to end.

While we would prefer to make voting schemes robust against all
kinds of failures, it may not be feasible due to the conflicting require-
ments. A common strategy in the design of voting schemes, then, is
to shift failure modes from more severe to less severe. For example,
the introduction of verifiability does not prevent manipulation of the
tally; it merely reveals when it happens. This essentially shifts the
failure mode from a catastrophic integrity failure (such as a foreign
power entirely fabricating the tally without anyone noticing) into a
less severe availability failure (such as forcing a new election, which is
of course bad, but orders of magnitude less severe than stealing the
election). In addition, by decreasing the potential benefit for attacking,
the incentives are changed, hopefully resulting in less attacks overall.

1Examples: Debian, ACM, IEEE, HYY.
2As an example of low-impact settings, many countries limit access to remote e-voting

to absent voters (such as citizens living abroad or military personnel).
3This claim is based on our good-faith effort to research remote e-voting in different

countries. It represents our opinion regarding what is impactful and what is not. We
address these three countries in detail in section 5.

3

We discuss these failures in terms of which participants need to
misbehave in order for a failure to occur. A well-designed voting scheme
will not suffer catastrophic failures due to a few misbehaving participants,
even if they are privileged authorities.

1.3 Trust

Trust is the central, overarching theme in voting schemes. However,
in this context it has two distinct meanings, which can give rise to
confusion [73]. Social scientists often talk about increasing the public’s
trust towards the voting system, whereas computer scientists often talk
about reducing trust – in particular, reducing the need to blindly trust
authorities when they declare an election outcome. We prefer elections
to be based on evidence rather than blind trust. So whenever we mention
”trust” in this thesis, we refer to the latter meaning (computer science
perspective). The only exception is appendix B, where we discuss trust
in the former meaning (social science perspective).

1.4 Verifiability

Verifiability is another recurring concept in this thesis with two distinct
approaches. Although they are not mutually exclusive, we are going
to focus on only one of them. Next we will describe the approach
that we are going to ignore (verification of equipment), and after that
we are going to describe the approach that we are going to focus on
(verification of outcome).

Verification of equipment

The traditional approach to verifying a voting system is to verify that
all of its parts are operating correctly [79][93][8]. Whether those parts
are computers or punchcard machines, the idea is the same: government
representatives sit down to decide exactly how they want equipment
to operate. These rules are written down and a costly certification
program is created to stamp equipment as government-certified. The
certification program might be augmented by public reviews of source
code and similar methods.

These government certification programs stifle competition and tech-
nological progress without providing tangible security benefits [79][93][56].
At times they even harm security. For example, a voting machine run-
ning Windows XP was certified as secure in the U.S., but security
updates were not installed (presumably due to cost issues of certifying

4

the updates), so an outdated version of Windows XP – with WiFi
turned on – kept running on the voting machine as of 2014 [69].

As another government-certified horror story, the source code of a
DRE machine was accidentally leaked by its manufacturer (DRE means
direct-recording electronic voting machine, a device that a voter uses
to input their vote in supervised conditions, usually without leaving
a paper audit trail). The manufacturer, Diebold (currently operating
as Premier Election Solutions), provides DRE machines for numerous
high-stakes elections in the U.S. The leaked source code was analyzed
by Kohno et al. [49] and the analysis revealed a complete disregard
for security. The leaked system does not provide even rudimentary
security measures. For example, voting data is transmitted from polling
places to central tabulation unencrypted and without authentication.
This could potentially allow anyone with basic programming skills to
manipulate election results without detection.

Even if manufacturers of voting machines applied industry standard
best practices like timely installation of security updates, encrypting
data in transit, and so forth, it is highly unlikely that they would
be able to write code which works as intended. A rogue employee
might intentionally hide a vulnerability in code, or an honest employee
might accidentally create a vulnerability that remains undetected. The
Underhanded C Contest4, a long-running competition for hiding vul-
nerabilities in plain sight, illustrates how difficult it can be to verify
that a piece of code functions as auditors believe it functions. A similar
competition was arranged specifically for hiding vulnerabilities in DRE
voting applications [4]. Furthermore, even if the source code of a DRE
system is published and somehow verified to function as intended, there
are no guarantees that the code running inside actual DRE machines is
the same as the one published.

Equipment can fail even without intentional sabotage. Stark and
Wagner [93] detail numerous examples of electronic voting machines
losing votes and failing to count votes correctly. In one case a voting
machine actually reported negative votes for a candidate.

In summary, we should not rely on verification of equipment. Certain
processes (such as public review of source code) can certainly augment
security, but we should not fool ourselves into thinking that we can
verify how a computer operates.

4http://www.underhanded-c.org/ (accessed on 20.9.2019)

5

Verification of outcome

We don’t really care how the computers within a voting system are
operating – we care insofar as to gain confidence in the outcome. But
we can actually design voting schemes in such a way that we can verify
the outcome directly without verifying the equipment. The high-level
idea is that we have inputs going into a system and outputs coming out
of the system. Instead of attempting to verify what the system does,
we can simply verify that the outputs are correctly generated from the
inputs.

A simple example to illustrate this idea is the ”public” voting scheme
we described earlier (where everyone’s votes are public). In this example
we still need a computer or a human to count the votes and publish
the official tally, but the voters can verify that the tally is correct by
comparing the inputs and outputs of the system, instead of reviewing
source code for the ”official” vote-counting computer.

Schemes which have good verifiability properties are often referred
to as E2E (”end-to-end”) verifiable.5 We will present actual examples of
verifiable voting schemes in section 5. They are often fairly complicated
to defend against various attacks, but the core of these schemes often
follows the same pattern as the ”public” scheme verifiability example:

1. The voter gets some kind of receipt of their vote. They can use
this receipt to confirm that their vote has been recorded. (In some
schemes the receipt can not be used to prove to other people how
they voted, so it does not promote vote-buying and coercion.)

2. Anyone can verify that the tally is properly counted from recorded
votes. (Often the votes are published in encrypted form and
cryptography is used to verify that the tally of votes is correct.)

The cryptographic verification procedures described in this thesis may
sound overwhelming at times. It is good to remember that normal
people would not be expected to understand these procedures; they can
(mostly) click a button and have a computer do all the work for them.
Naturally, this has some implications for the understandability of the
voting system. We argue in appendix B that this isn’t a problem.

A concept closely related to verifiability is software independence [79].
A scheme is said to be software independent when an error in its software

5We avoid using the ”E2E” term since it misleadingly implies actual verifiability from
end to end, but is commonly used to describe schemes which do not fully provide such
verifiability. For example, Civitas is commonly referred to as E2E verifiable, and as we
will show in section 5, it does not provide end to end verifiability. Our interpretation is
that authors use this term loosely to describe schemes which have merely good verifiability
properties.

6

can not cause an undetected change in election outcome. This may be
achieved with cryptographic verification [20] or it may be achieved by
augmenting the electronic record with a voter-verifiable paper audit
trail [61] (provided that the paper trail is actually audited [93]).

A more general concept – covering both paper and e-voting schemes
– is evidence-based elections [93]. A paper voting scheme can be designed
to produce cryptographic [17] or non-cryptographic [80] evidence for
the correctness of the outcome. Even a traditional paper voting scheme
– which is not designed to produce such evidence – can be augmented
with compliance audits and risk-limiting audits in order to make its
outcome verifiable [8].

The high-level idea behind a risk-limiting audit is that random ballots
are examined until we can be confident that the election outcome is
correct. Before the audit begins we set a limit – for example, 99% –
and the auditors continue examining random ballots until the sample
that indicates higher than 99% probability that the election outcome
is correct. This means that in a close election auditors have to review
more ballots than we would in a landslide election. Risk-limiting audits
are surprisingly cost-effective: in a typical election only a tiny portion
of ballots have to be audited until we know the outcome to be correct
with a very high probability. If the risk-limiting audit fails to convince
us that the outcome is correct, a full manual recount is triggered.
Risk-limiting audits are convincing only if auditors can verify that the
ballots themselves have not been tampered with. For this we need
compliance audits, which can produce evidence that the audit trail is
sufficient. [58][10][93]

1.5 Disposition of this thesis

The remainder of this thesis is divided into sections as follows:

• Section 2 describes our research.

• Section 3 describes our framework for comparing voting schemes.

• Section 4 describes cryptographic building blocks used in voting
schemes.

• Section 5 contains case reviews of voting schemes (from our re-
search perspective described in section 2, utilizing the framework
provided in section 3, assuming that the reader is familiar with
the building blocks described in section 4).

• Section 6 summarizes our findings in a comparison table.

7

Our main contributions are the framework and the comparison. Appen-
dices A and B contain additional discussion which is on the fringes of
our scope. Appendices C and D contain justifications for some claims
and decisions made during this research.

2 Research approach

In this section we articulate our research questions, compare this thesis
to similar prior work, highlight our contributions, define our scope and
describe our research methods.

2.1 Research questions

We want to investigate the security of voting schemes from a practi-
cal standpoint (under realistic assumptions). We want to provide a
level (”apples-to-apples”) comparison to illustrate differences between
different schemes. We articulate the following research questions:

RQ 1. What strengths and weaknesses do different schemes have relative
to each other?

RQ 2. Are some of the weaknesses a result of unavoidable tradeoffs?

RQ 3. Which voting schemes are most suitable for different use cases?

2.2 Prior work

Several authors [8][64][78][60][100][62][29][57][85] list security properties
discovered in literature. Some of them [64][78] do not attempt to consol-
idate overlapping and conflicting properties into a coherent framework.
Many of them [78][60][100] do not provide a comprehensive comparison
of voting schemes. Some works [8][62][29][57] have other issues. One
article [85] provides both a great framework and a great comparison –
however, it was written in 2004, so it does not compare modern schemes.
We elaborate on these claims in appendix D.

In summary, we were unable to find a thorough, apples-to-apples
comparison on the security of modern voting schemes. We hope that
this thesis fills that void.

8

2.3 Contributions

The main contributions of this thesis are the following:

• We provide a framework for comparing the security of voting
schemes (section 3). Our framework may be considered novel in
that trust assumptions are an output of the framework, not an
input. The collection of properties in our framework is also novel
– a result of deconstructing and consolidating existing properties
from literature in a creative way in order to satisfy a specific set
of goals.

• We apply the framework in case reviews of several real-world and
academic schemes (section 5). Unlike prior work in literature6, we
evaluate all schemes under the same assumptions in an attempt
to provide an apples-to-apples comparison.

• We compact the results of the case reviews into a simple compari-
son table (section 6). In stark contrast to prior work in literature,
we justify every single claim presented in the comparison table.7

In addition, we present some minor contributions:

• We articulate the notion of displaced votes (sections 3, 5 and 6).
This is a serious threat in several voting schemes and it has been
severely overlooked in prior literature.

• We articulate a more stringent requirement for dispute resolution
(than what is typically described in literature). We argue why this
is necessary. (Section 3.6.4.)

• We identify a missing element of the original Floating Receipts
-scheme (bar code, section 5.2).

• We identify a cast-as-intended vulnerability in Floating Receipts
and propose an amendment to fix the vulnerability (section 5.2).

6Comparisons in literature typically evaluate different schemes under different assump-
tions (whichever assumptions the scheme’s authors used). Even when schemes are largely
evaluated under the same assumptions, authors often evade hard questions by marking
properties as ”conditionally accepted” (implying additional assumptions, often without
specifying what they are). Needless to say, we feel that this approach makes it difficult to
compare schemes to each other. We elaborate on these claims in appendix D.

7Readers who are wondering how we came to draw a particular conclusion can simply
click on the name of the scheme in the comparison table. Comparison tables in prior
work are typically unjustified – values in the tables seemingly appear from thin air. We
elaborate on this claim in appendix D.

9

• We propose an amendment to Floating Receipts to improve the
amount of receipts which would be verified in a real-world scenario
(section 5.2).

• We identify a denial-of-service vulnerability in the audit procedures
of Helios (section 5.8).

• We provide the first comprehensive analysis of individual verifia-
bility in Civitas (section 5.9).

• We identify a forced abstention vulnerability in Civitas’ smart
card extension (section 5.9).

• We propose an amendment to Civitas’ smart card extension to
improve its coercion-resistance (unrelated to the forced abstention
vulnerability) (section 5.9).

2.4 Scope limitations

This literature review compares security of different voting schemes.
Aspects other than security, such as usability or accessibility, are not
considered. We want to highlight that our focus is specifically on voting
schemes; not their corresponding implementation, best practices of
software development, or other related subjects. A voting scheme refers
to the high-level protocol description; the theoretical ”rules” according
to which voting and tallying is organized. A voting system can be
thought of as the implementation of a voting scheme.8 In practice,
voting systems often contain multiple voting schemes to accommodate
different voters. For example, Estonia’s mixed system includes a remote
e-voting scheme and an in-person paper voting scheme.9

In addition to our intended scope, we had to constrain our workload
with further scope limitations, which we describe next.

8These concepts are often co-mingled in literature. However, we needed some terms to
describe what this thesis is and isn’t about, and we chose to use these terms.

9In Estonia’s system, a voter may override their remote vote by re-voting in-person.
Thus, the in-person and remote voting schemes are not clearly separated and one might
argue they should be viewed as a conjoined scheme. We consider them separate.

10

2.4.1 Exotic ballots

The scope of this thesis is limited to simple ballots10 where the voter
selects one choice out of pre-determined options. More exotic ballots
may have multiple races, allow a voter to select multiple options for
a single race (approval voting) or the expression of the voter may be
more nuanced (rank voting, range voting).

We provide the following justification for this scope limitation: Vot-
ing schemes can be often modified to support different kinds of ballots
without significantly weakening their security properties.11 This means
that a comparison of voting schemes for simple ballots can be useful
even if the goal is to select a voting scheme for a more exotic ballot
type.

2.4.2 Soundness of cryptographic building blocks

Many voting schemes utilize cryptography. Although we do evaluate the
soundness of voting schemes (and in many cases we refute claims made
by their authors), we do not evaluate the soundness of cryptographic
building blocks utilized in these schemes. The cryptographic building
blocks described in section 4 are ”standard” in cryptography (as in,
they are not novel inventions created for voting schemes).

We do not imply that all of the underlying cryptography is secure.
In fact, the security of cryptography relies extensively on unproven
assumptions12 and the history of cryptography is littered with broken
constructions which were once thought to be secure13. This is all very
interesting, but outside the scope of this thesis.

10We coined the term simple ballots because the terms available in literature conflate
ballot type with voting system type. For example, Plurality voting is the closest term we
found in literature. It conflates ballot type (”choose one”) with method of determining
winners (”single winner based on who receives most votes”). We are concerned with ballot
type only; not with how the results of the tally are utilized. For example, in Finnish
parliamentary elections there are multiple winners and they are not determined solely
based on individual vote counts. If we had scoped to plurality voting, we would have
unnecessarily excluded many voting systems, including the Finnish parliamentary elections.

11Rivest and Smith [80] provide great examples on how a voting scheme can be extended
to support multiple ballot types.

12Many cryptographic proofs are reductions to certain hardness assumptions, such as
the Decisional Diffie-Hellman assumption [9]. In other words, we may not be able to prove
that breaking something is hard, but we may be able to prove it is at least as hard as
breaking something else: a well-known problem which no-one has been able to break.

13The history of hash functions is a good example of breakage:
https://valerieaurora.org/hash.html (accessed 25.7.2019)

11

2.4.3 Man-in-the-middle attacks

Man-in-the-middle attacks refer to attacks which require privileged
network access, such as a colluding Internet Service Provider or WiFi
hotspot. Although they are a serious threat in many other contexts,
we consider them to be an academic curiosity in the context of voting
schemes (we would like to emphasize again that our research concerns
voting schemes, not their corresponding implementations14). Standard
cryptographic methods15 can be used to protect votes from eavesdrop-
ping and tampering in transit. The remaining threat is the identification
of who voted. While some authors [5] consider this information harmless,
it can in theory be used to launch forced abstention attacks [46] (a
form of coercion and vote-buying). However, the Tor anonymization
network [77] can be used to adequately defend from this threat in
practice.16 We do not attempt to conclusively prove these claims; we
are merely justifying our decision to exclude man-in-the-middle attacks
from our scope.

2.4.4 Cost analyses

The cost of arranging elections is of great practical importance, but it
is outside the scope of this thesis, as we focus on voting schemes, not
implementations. However, in order for this thesis to have any practical
relevance, we do consider costs in one aspect: we disregard absurdly
expensive schemes. To summarize, we evaluate voting schemes which
are believed to have feasible costs, but we do not differentiate how costly
these schemes are relative to each other.

Furthermore, we do not consider cost analyses on mounting attacks
(such as cost estimation for discovering and weaponizing vulnerabilities,
or cost estimation for brute-force or denial-of-service attacks). We
reviewed a few articles of this nature, but in our view, they were heavily
opinionated and relied too much on dubious assumptions. In other
words, our justification for leaving these cost analyses outside our scope
is that we were unable to find quality research articles on this subject.

14Man-in-the-middle vulnerabilities have been discovered [35][14] in real-world imple-
mentations of voting schemes.

15Mainly referring to encryption, authentication, and Public Key Infrastructure (certifi-
cate authorities in particular).

16We are aware of de-anonymization attacks targeted at Tor users. We find it incredibly
unlikely that these attacks would ever be mounted just to reveal who voted (they can not
be used to reveal what was on the ballot).

12

2.5 Research methods

This thesis is a literature review. We began our literature search by
making Google and Google Scholar searches related to voting security
in general. We soon expanded our search to specific voting schemes
and specific security properties. As we discovered relevant works, we
often followed their citations backwards to discover related articles.
Sometimes we followed citations forward – for example, if we wanted to
verify that a proposed construction was not later broken.

We selected articles for further reading based on title, abstract,
publish date and citations. After partially reading articles we made
further eliminations. For example, many older research papers describe
obscure voting schemes which rely heavily on trusted authorities. These
schemes seem inferior compared to more modern schemes, so we did
not see merit in analyzing them further. We made exceptions cases
where the system is actually still used and has real-world impact. For
example, any system which is currently in use by a large portion of
a country for government elections deserves attention. To summarize
our selection process: we were interested in voting schemes which were
either good or significantly used in practice.

The bulk of the work was spent crafting the comparison framework.
We spent endless hours tweaking our scope, assumptions and properties.
Every time we learned something new about voting schemes, we rec-
ognized aspects of the framework that were lacking. It turns out that
classifying things is hard.

3 Comparison framework

Every author in voting literature has a different perspective and different
focus. It is difficult to compare different systems without any common
ground. In order to find common ground, we make the following
contributions:

1. We articulate a set of goals for a comparison framework.

2. We present a framework to fulfill these goals as well as possible.

To the best of our knowledge we are the first to articulate a set of goals
for a comparison framework in this field. Although many frameworks
have been proposed, the authors have not explained which goals they
hope to achieve with their frameworks.17

17For more discussion on other frameworks, we refer to appendix D.

13

3.1 Goals

These are the goals we wish to fulfill with our framework:

1. The framework must be useful in differentiating different schemes.
(We want to highlight the strengths and weaknesses of schemes
relative to each other, and the properties we choose for comparison
should help us in this task.)

2. Results of the comparison should be unambiguous. (If two people
read the same results, they should not walk away with different
conclusions.)

3. Results of the comparison should be useful to non-experts. (Presen-
tation of results should be simplified to the point where laypersons
can mostly understand them. For example, informal definitions
are easier to understand than formal definitions.)

4. Properties should be defined without unnecessary overlap. (Litera-
ture is filled with terms which refer to almost identical concepts.
We do not want to merely repeat everything we found. Similar
concepts should be either consolidated together or deconstructed
into clearly separate terms.)

5. Properties should be defined so that everything important is cov-
ered.

6. Assumptions should be practical.

7. Assumptions should remain constant throughout the comparison
(instead of using one set of assumptions to evaluate one scheme
and a different set of assumptions to evaluate a different scheme,
as is usually done in prior literature. We elaborate on this in
appendix D.).

8. Familiarity: properties should leverage established definitions and
terms as much as possible (introducing new concepts and terms
only if absolutely necessary).

Next we will present a framework which attempts to fulfill these goals.

3.2 Threat model

The typical approach in literature is to define a single adversary with a
wide range of capabilities (along with some crucial, limitating assump-
tions), and then analyze how vulnerable a particular voting scheme is

14

against that particular adversary. This type of analysis often yields
very interesting results, but we do not think it is realistic or useful.

In the real world there are many adversaries with different capabili-
ties; Inguva et al. [41] provide an excellent overview. We have to make
certain tradeoffs in the design of our voting schemes to account for these
adversaries and it is important to acknowledge these tradeoffs instead
of hiding them under unrealistic assumptions of a singular adversary. In
addition, it is difficult to compare different systems when each author
is defending against a different adversary.

We acknowledge that multiple adversaries exist and they have dif-
ferent capabilities. Therefore, we do not make overarching trust as-
sumptions regarding which participants are honest. Instead, for each
type of property, we describe the weakest possible trust assumptions
under which the property is secured. For example, instead of saying
”ballot secrecy is guaranteed” [given our trust assumptions], we might
say ”ballot secrecy is guaranteed as long as at least one authority is
honest”. This allows us to illustrate how different trust assumptions
are required to secure different properties within a scheme. Likewise,
it allows us to illustrate how different trust assumptions are required
to secure the same property within different schemes. In other words,
trust assumptions are an output of our framework, not an input.

We attempt to consolidate all important security properties from
literature. We present our properties in relation to terminology that
is prevalent in voting literature. Next we will present our assumptions
and after that we will present the security properties.

3.3 Assumptions

In order to provide an apples-to-apples comparison we need to have
unified assumptions (as opposed to evaluating each scheme under a
different set of assumptions). Note that trust assumptions are an
output of our framework, not an input, which is why we do not set
trust assumptions in this section.

3.3.1 A line in the sand

Anyone who has ever been to a magic show knows how difficult it can
be to detect deception, even for an observer who is perfectly alert and
waiting for something to happen. Now consider the process of counting
thousands of physical ballots: many people sit in a room, shuffling
through paper for hours on end. If observers are unable to spot magic
tricks at a magic show, what hope do they have of spotting magic tricks
during this long and arduous process of vote counting? Some ballots

15

might disappear or end up in the wrong pile without anyone noticing.
In fact, we already know that manual vote counting often produces
incorrect results even when everyone in the room is honestly trying
their best [32].

The physical world offers endless opportunities for deception. People
could hide cameras in voting booths to violate ballot secrecy18. People
could replace pens in voting booths with disappearing ink pens19. The
digital world offers opportunities for deception as well. Someone could
infect a vote-counting machine with malware to manipulate the count.
We could design a voting scheme to allow anyone to verify the count,
but what if someone infects all computers with the same malware so
there isn’t a clean computer to verify with?

We could throw our hands in the air and say ”anything is possible”,
but that would not lead to a very useful analysis. Instead, we draw a line
in the sand and say that some threats are realistic, other threats are not.
We do not think hiding cameras in voting booths is a realistic threat,
but we do think people are going to photograph their own ballots [40]
if they have an incentive to do so. We do not think disappearing ink
pens are a realistic threat, but we do think people are willing to steal
entire ballot boxes [26]. We expect everyone to have differing opinions
where the line should be drawn. That’s fine. We still have to draw the
line somewhere.

3.3.2 Adversaries are computationally bounded

Some cryptographic schemes are secure against any adversary, including
adversaries with unlimited (”unbounded”) computational power [63].
Other schemes are secure only against computationally bounded ad-
versaries. On the face of it, this does not appear to be a practical
distinction. After all, all adversaries in the real world are computa-
tionally bounded. We decided to reduce our workload by consciously
ignoring this aspect of voting schemes.

3.3.3 Voters are unable to produce unique ballots

If the voting scheme publishes all ballots, it is crucial that a voter
can not produce a ballot which stands out from the rest. Otherwise
a potential coercer or vote-buyer may identify voters from published

18On rare occasions cameras have been hidden in voting booths:
https://www.timesofisrael.com/operation-moral-standards-inside-likuds-election-day-
arab-surveillance-program/ (accessed on 21.9.2019)

19On rare occasions disappearing ink pens have been used to sabotage elections:
https://www.thetimes.co.uk/article/votes-in-invisible-ink-just-vanish-in-ballot (accessed
on 21.9.2019)

16

ballots by coercing them into filling ballots in a specific way. For
example, write-in votes enable voters to nominate new choices on the
ballot (such as a person who is not officially running in the race). A
coercer might demand that the voter inserts a specific, arbitrary string
as their write-in vote (to prove that the voter has wasted their vote).
Unique ballots can be produced in other ways as well. For example, if
a ballot contains too many races, the combination of candidates on a
ballot may be unique.20

In order to simplify later analysis, we assume that voters will be
unable to produce unique ballots (or ballots which are likely to be
unique). In our opinion this assumption is realistic in typical single-race
ballots.21,22

3.3.4 Voter registration is not vulnerable to impersonation

Voter registration is needed to ensure that only authorized persons can
vote and no voter votes more than the allowed number of times (”one
person one vote”). Some countries, such as the United States, have
an explicit voter registration process, whereas other countries, such
as Finland, provide automatic voter registration for eligible persons.
In any case, we want to make a distinction between ”identification
credentials” and ”voting credentials”. In many voting schemes, the
voter uses their identification credentials to acquire voting credentials
during the registration procedure. We assume that voters can not be
impersonated during this registration procedure.

We acknowledge that this assumption is somewhat problematic. In
reality, vote-buyers may co-operate with voters to impersonate them
during the registration phase. This circumvents any later protections
against vote-buying and coercion; if a vote-buyer is able to acquire legit-
imate voter credentials, they will be indistinguishable from a legitimate
voter. A vote-buyer who acquires voter credentials directly from the
registrar can also be confident in the authenticity of the credentials,
and thus avoid being cheated by the vote-seller, making vote-buying
economically viable.

Clarkson et al. [20] propose various practical defenses against this
impersonation threat. One of their recommendations is to require

20To be specific, we assume voters are unable to produce ballots which are unique, likely
to be unique, rare, or anything similar. The mere appearance of a ballot should not be
enough to convince a vote-buyer or coercer that the voter followed their instructions.

21If there are multiple races, especially if an exotic ballot type is used, voters may be
able to produce unique ballots. A practical mitigation in these instances is to separate
each race onto different ballots, as recommended by Rivest and Smith [80].

22One common case where our unique ballot assumption falls short is handwritten
ballots. Handwriting is inherently compatible with steganography, allowing voters to
encode additional information on their ballots. However, we consider this threat vector to
be more ”academic” than ”practical”.

17

supervised conditions for registration. Another recommendation is to
make identification credentials so valuable that voters will be reluctant
to sell them. As an example they mention the Estonian ID card,
which can be used – in addition to acquiring voter credentials – to sign
economic transactions, such as bank loans. Naturally, most users would
be reluctant to hand such power over to vote-buying entities.

We provide the following justification for assuming that voter regis-
tration is not vulnerable to impersonation: in order to provide coercion-
resistance there must be some kind of time window during which the
voter is not controlled by the coercer. If the voter is controlled by the
coercer at all times, it will be impossible to avoid coercion. In the con-
text of remote voting schemes, the natural choice for this trusted time
window is registration, because it can be arranged under supervised
conditions (unlike remote voting itself).

3.4 Summary of consolidated properties

In this section we summarize the properties in our framework to provide
the reader with the ”big picture” before delving into the details. The
order of properties is thematic and is not related to importance. We
encourage readers to peek into the comparison table (section 6.1) before
reading further. This should provide some intuition regarding how the
following properties are utilized in the comparison.

P1. Malware on voting device is unable to violate ballot secrecy. If the
voting device is a computer or similar, the voter must be able to
obfuscate their choice with code voting.

P2. Malware on voting device is unable to manipulate votes. If the
voting device is a computer or similar, voters must be convinced
of two things. First, that their personal vote has not been ma-
nipulated by malware (or bugs) on the voting device. Second,
that a large-scale malware campaign is not manipulating votes en
masse. One way to prevent these possibilities entirely is by using
a code voting scheme. Another way is by allowing voters to verify
(via secondary device) that their votes have been cast as intended
and recorded as cast, with a possibility to re-vote if errors are
discovered. However, since only a small portion of voters typically
use verification procedures, it is not sufficient to rectify only the
discovered errors. In the ”verify-and-revote” solution, we require
that voters be able to prove the existence of a large-scale malware
campaign in order to allow courts to interfere with the election
before larger damage is done. Furthermore, the ”verify-and-revote”
solution must not be susceptible to clash attacks.

18

P3. Voter is able to keep their ballot as secret. (To clarify, the voting
scheme does not leak information which could substantially help
an adversary to guess how a voter voted, given that the adversary
already has access to the final tally.)

P4. Voter is unable to prove to a large-scale vote-buyer how they voted.
We define large-scale vote-buyer as an adversary who does not
possess the ability to physically accompany voters, but does possess
the ability automate any computational workflow. For example,
a large-scale vote-buyer can automate verification of receipts (if
such a thing is possible) or they can electronically vote on behalf
of voters (if such a thing is possible). (To clarify, certain forms of
re-voting can be used to defraud vote-buyers and thus satisfy this
property.)

P5. Voter is unable to prove to a large-scale vote-buyer that they wasted
their right to vote. This covers two attacks: forced-abstention
attack (proof of not voting) and randomization attack (proof of
voting a random candidate). Both of these attacks intend to
prevent a voter from exercising their right to vote. Large-scale
vote-buyer is defined in P4.

P6. Voter is unable to prove to their spouse how they voted. Spouse is
representative of adversaries with the ability to physically accom-
pany voters in some parts of the electoral process, but without
the ability to collude with corrupted insiders. (The adversary can
not accompany voters during registration or inside a voting booth,
and the adversary can not accompany the voter during the entire
time window of the voting process). (To clarify, certain forms of
re-voting may fulfill this propery.)

P7. Voter is unable to prove to their spouse that they wasted their
right to vote. This covers two attacks: forced-abstention attack
(proof of not voting) and randomization attack (proof of voting
a random candidate). Both of these attacks intend to prevent a
voter from exercising their right to vote. Spouse is defined in P6.

P8. Voter can ensure their ballot is not accidentally spoiled. More
precisely, if the ballot is accidentally spoiled by the voter’s actions,
the voter has an ability to detect this and re-vote. (To clarify
a corner case, this definition also includes spoiling the ballot by
entering incorrect credentials in schemes like Civitas.)

19

P9. Voter can ensure their vote is recorded as cast. The voter has an
ability to verify that their vote has been recorded as cast (with
no susceptibility to clash attacks). If the voter receives negative
confirmation, no confirmation at all, or discovers a discrepancy
between how their vote was casted versus how it was recorded, they
can re-vote. Note that we expect this verification to be mandatory
(otherwise there is a risk that a large campaign will manipulate
many votes and only the verifying portion of voters have their
votes recorded properly). The voter may physically observe their
ballot falling in a box or the voter may rely on a trusted voting
device to show confirmation of digital receipt (corrupted voting
devices are considered separately in P2). (To clarify, we accept
any reasonable dispute resolution, even if the voter needs help of
the election officials in order to re-vote.)

P10. Voter can detect if their vote is displaced (deleted, replaced or
pre-empted). Even if voters can ensure that their vote is recorded,
an authority may delete their vote later. An additional threat
is present in some schemes: an adversary (such as the voter’s
spouse) may replace their vote by re-voting with their credentials.
Another variation of this threat is present in some schemes where
only the first vote counts. In that case, the adversary may pre-
empt the voter’s vote by voting before them. (We do not demand
dispute resolution for this property, because it would be inherently
impossible to provide for the ”replaced or pre-empted” conditions.)

P11. The tally is counted correctly from recorded votes. In addition,
we require adequate dispute resolution in case of discrepancies in
order to satisfy this property.

P12. No ballot stuffing. All votes which affect the final tally correspond
to a real voter, no voter corresponds to more than one vote, and
malformed votes are not counted. Furthermore, fraudulent votes
can not be added to voters who did not vote. Voters who did
not vote will be extremely unlikely to take initiative in verifying
their non-vote, so we do not accept verification mechanisms which
rely on the initiative of these non-voters. In addition, we require
dispute resolution to satisfy this property. In other words, if
ballot stuffing is detected, it must be rectified. Note that it is not
sufficient to remove only ”the detected subset” of fraudulent votes
from the tally; either all fraudulent votes must be detected and
removed or the election results must be invalidated and a new
election must be organized.

20

P13. Denial-of-service resistance. Absence of any known attacks which
could be undertaken to deny availability to voting or tallying.
Attacks by authorities are included. General DDoS attacks are
excluded.

Additional clarifications:

• Privileged insiders, such as poll workers, talliers and voting system
vendors, are grouped under the umbrella of authorities. A group
of insiders working together, or working for the same employer, is
considered to represent a single authority.

• We consider malware (and bugs) on voting devices as a separate
concern, in properties P1 and P2. All other properties reflect cases
where software on voting devices is working as intended. Note
that we make no assumptions regarding software on other devices
(for example, software on a vote-counting computer).

• If a scheme is software independent, we do not consider an exclusive
vendor at all problematic. If a scheme is not software independent
and it has an exclusive vendor, then we consider that vendor to be
a single point of failure for a variety of things, including undetected
vote manipulation. In some cases this causes us to flag a property
with ”Holds as long as no authorities are misbehaving”.

• We assume the presence of malicious voters and malicious outsiders.
Furthermore, we assume that a large number of malicious voters
are willing to collude with a corrupted authority (in cases where
an authority is corrupted).

Next we delve into the details to motivate why these properties are
important and how they relate to familiar terms in voting literature.
We omit justifications for why we consolidated the properties in exactly
this fashion – it was a long process of constant tweaking motivated by
the goals in section 3.1. We organized the following analysis according
to the CIA triad: Confidentiality, Integrity and Availability.

3.5 Confidentiality

In this section we present confidentiality properties organized according
to familiar concepts from voting literature: ballot secrecy, receipt-
freeness, coercion-resistance and fairness. The first three are about
protecting individual voter’s information, the fourth is about protecting
aggregate information.

21

3.5.1 Ballot secrecy

We define ballot secrecy as the ability of the voter to keep their votes
as secret.

More precisely, the voting scheme does not intentionally publicize or
unintentionally leak information which could substantially improve an
adversary’s guess regarding how a voter voted (given that the adversary
already knows the final vote counts for each candidate). This precise
definition covers some important corner cases.

Suppose that 100% of voters vote for the same candidate. It is trivial
for an adversary to find out how each voter voted simply using the final
vote counts for each candidate. However, the adversary’s guess is not
improved by any additional information leaked by the voting scheme.
Therefore, using this definition, ballot secrecy is not compromised in
this example.

In some cases an adversary is able to make educated guesses about
voters’ choices, even though the guesses are not 100% accurate. For
example, correlation attacks on ThreeBallot fall inside this category [96].
Since our research questions concern practical viability (rather than
theoretical guarantees), we decided to draw a line in the sand and declare
substantial leaks of information as violating ballot secrecy (this mainly
affects the VAV scheme in our comparison). As such, our definition is
most influenced by Juels et al. [45] and Strauss [96].

The following properties in our comparison are related to ballot
secrecy:

P1. Malware on voting device is unable to violate ballot secrecy. If the
voting device is a computer or similar, the voter must be able to
obfuscate their choice with code voting.

P3. Voter is able to keep their ballot as secret. (To clarify, the voting
scheme does not leak information which could substantially help
an adversary to guess how a voter voted, given that the adversary
already has access to the final tally.)

3.5.2 Receipt-freeness

We define receipt-freeness as the inability of the voter to prove to a
static adversary how they voted.

Our definition is in line with Juels et al. [45], who provide a brief
history of receipt-freeness in literature. According to them, the term
appeared first in [6] by Benaloh and Tuinstra, although the concept
was independently introduced by Niemi and Renvall in [68].

22

Receipt-freeness can be seen as a stronger form of ballot secrecy.
Whereas ballot secrecy prevents the authorities from violating confiden-
tiality, receipt-freeness prevents the voter from violating confidentiality.
We can also look at it from the perspective of who is protected: bal-
lot secrecy protects the voter from coercion, whereas receipt-freeness
protects the general public from vote-buying. Although, naturally,
receipt-freeness also provides stronger protection against coercion. For
example, ballot secrecy is enough to prevent mild forms of coercion,
such as your co-workers giving you disapproving looks after you voted
the wrong way, but is not enough to prevent stronger forms of coercion,
such as a local thug demanding a receipt that proves you voted the
right way.

When voters are unable to prove how they voted, vote-buyers risk
being cheated out of their money. This hopefully23 has the effect of
turning large-scale vote-buying into a fruitless pursuit.

The following property in our comparison is related to receipt-
freeness:

P4. Voter is unable to prove to a large-scale vote-buyer how they voted.
We define large-scale vote-buyer as an adversary who does not
possess the ability to physically accompany voters, but does possess
the ability automate any computational workflow. For example,
a large-scale vote-buyer can automate verification of receipts (if
such a thing is possible) or they can electronically vote on behalf
of voters (if such a thing is possible). (To clarify, certain forms of
re-voting can be used to defraud vote-buyers and thus satisfy this
property.)

23In some cases receipt-freeness is not enough to prevent large-scale vote-buying. For
example, cultural and economic conditions in Argentina paved the way for large-scale
vote-buying [12]. Argentinian political parties provided food, clothing, and other necessities
to people in exchange for their votes. Voters often ”returned the favor” despite that they
could theoretically cheat.

23

3.5.3 Coercion-resistance

We define coercion-resistance as the inability of the voter to prove to an
interactive adversary anything about their participation in the voting
process. Paraphrasing from [45] and [20], coercion-resistance covers
receipt-freeness and the following four additional attacks:

• Interactive adversary: the voter is unable to convince an adversary
who is physically present during the voting process (such as a
coercive spouse in a remote e-voting scheme).

• Simulation attack: the voter is unable to convince an adversary
even if they loan their voting credentials to them.

• Randomization attack: the voter is unable to convince an adversary
that they voted for a random candidate.24

• Forced-abstention attack: the voter is unable to convince an
adversary that they voted at all.

The terminology around receipt-freeness and coercion-resistance can
be misleading. It may give a false impression that receipt-freeness
is entirely about preventing vote-buying whereas coercion-resistance
is entirely about preventing coercion. This is not the case. Both
receipt-freeness and coercion-resistance protect against both coercion
and vote-buying. Coercion-resistance offers more protection against
both threats. In fact, these threats are almost identical from a game
theoretic perspective25.

Providing coercion-resistance in a practical setting is an ambitious
goal, as illustrated in [20] by Clarkson et al.: ”In remote voting, the
coercer could even be the voter’s employer or domestic partner, physically
present with the voter and controlling the entire process. Against such
coercers, it is necessary to ensure that voters can appear to comply with
any behavior demanded of them.” In fact, it is so ambitious that no
voting scheme achieves it without setting unrealistic trust assumptions
(or sacrificing verifiability).

Furthermore, some attacks (such as the simulation attack) are clearly
more serious than others (such as the forced-abstention attack).26 Due

24It may not be immediately obvious how a randomization attack may be possible if
the voter can not prove who they voted for. Hirt and Sako [39] provide an example in the
context of remote e-voting. For an example in the context of in-person paper voting, see
section 5.3.

25If we exclude mild forms of coercion and some special cases, we can expect a vote-seller
to make the same decisions as a coerced voter. In fact, many articles in literature use these
terms synonymously.

26For example, Bell et al. [5] describe publication of who voted as ”harmless”.

24

to these reasons, we spent a lot of time considering different options of
how we should bundle these attacks in the properties of our comparison.
This is the end result:

P4. Voter is unable to prove to a large-scale vote-buyer how they voted.
We define large-scale vote-buyer as an adversary who does not
possess the ability to physically accompany voters, but does possess
the ability automate any computational workflow. For example,
a large-scale vote-buyer can automate verification of receipts (if
such a thing is possible) or they can electronically vote on behalf
of voters (if such a thing is possible). (To clarify, certain forms of
re-voting can be used to defraud vote-buyers and thus satisfy this
property.)

P5. Voter is unable to prove to a large-scale vote-buyer that they wasted
their right to vote. This covers two attacks: forced-abstention
attack (proof of not voting) and randomization attack (proof of
voting a random candidate). Both of these attacks intend to
prevent a voter from exercising their right to vote. Large-scale
vote-buyer is defined in P4.

P6. Voter is unable to prove to their spouse how they voted. Spouse is
representative of adversaries with the ability to physically accom-
pany voters in some parts of the electoral process, but without
the ability to collude with corrupted insiders. (The adversary can
not accompany voters during registration or inside a voting booth,
and the adversary can not accompany the voter during the entire
time window of the voting process). (To clarify, certain forms of
re-voting may fulfill this propery.)

P7. Voter is unable to prove to their spouse that they wasted their
right to vote. This covers two attacks: forced-abstention attack
(proof of not voting) and randomization attack (proof of voting
a random candidate). Both of these attacks intend to prevent a
voter from exercising their right to vote. Spouse is defined in P6.

3.5.4 Fairness

Releasing intermediate results of an election could provide upcoming
voters with an advantage over those who have already voted. We
define fairness as all voters having access to substantially the same
information.

Note that most definitions of fairness are stricter than ours. For
example, Rjaskova [81] and Fouard et al. [29] have opted for a definition

25

which excludes participants from having ”any knowledge” about the
partial tally before the end of the election. In our opinion this definition
is unnecessarily strict because any in-person voting scheme leaks a
negligible amount of information to voters around voting areas. For
example, if you see your neighbor walk to the voting booth, and you
know they favor a particular candidate, you do gain some knowledge
about the partial tally before the end of the election – but the knowledge
you gain is not substantial.

In earlier drafts of this thesis we had a fairness property in the
comparison. However, we noticed that for all of the voting schemes
in our comparison, the conditions necessary to violate fairness were
always the same as the conditions required to violate ballot secrecy. In
other words, the fairness property was redundant. This may not always
be the case for all voting schemes, but it is the case for all schemes
in our comparison. Furthermore, we do not consider the release of
intermediate results to be a realistic threat to voting systems in practice.
Due to these reasons we decided to exclude the fairness property from
our comparison.

3.6 Integrity

The majority of articles related to integrity in voting schemes focus on
verifiability: the detection of errors. In many cases it is unclear what
should be done when errors are detected. This aspect of voting schemes
is referred to as dispute resolution.

3.6.1 Individual verifiability

We define individual verifiability as the ability of the voter to convince
themselves that their vote was counted appropriately. We deconstruct
individual verifiability into 3 consecutive phases: cast as intended,
recorded as cast, and count as recorded.

Note that this is a contentious term. Almost every author uses
a one-sentence description similar to ours, but as they deconstruct
this high-level description into low-level details, they end up with a
wide variety of different definitions. Our definition consolidates all
of the important aspects from various definitions offered in literature.
We provide this simple justification for our definition: every low-level
detail that we include is necessary to satisfy the agreed-upon high-level
description. As we describe the 3 phases of individual verifiability, we
provide examples to illustrate how each phase is necessary.

Some readers may wonder why a single ”count as intended” verifi-
cation at the end of the voting process would not be sufficient. The

26

answer is that voters have no recourse to correct mistakes at the end of
the voting process (except, perhaps in the case where a large proportion
of voters report mistakes). It is preferrable to have all three of these
verifications so that some errors can be corrected in time. In addition,
voting schemes often provide some of these verifications, but not all of
them, so this deconstruction helps to differentiate voting schemes.

Cast as intended

We define cast as intended verification as the ability of the voter to
verify that their intent was interpreted correctly. If their vote was not
interpreted correctly, the voter has the opportunity to fix the error
before depositing their vote in the ballot box (physical or otherwise).

For example, imagine a voting scheme where a voter goes to a polling
place, selects their preferred candidate on a computer, and the computer
prints out a filled ballot. The voter can now verify that their intent was
interpreted correctly before depositing the unambiguous ballot into the
ballot box. If the selection was incorrect or there is a problem with the
computer, the problem can be corrected before any damage is done.

As an example of a voting scheme which doesn’t provide ”cast as
intended” verifiability, consider a typical paper voting scheme, such
as the one used in Finland. A voter goes to the polling place, writes
down handwritten symbols representing their preferred candidate, and
deposits the ballot before their intent is interpreted. In every Finnish
election a significant amount of ballots are disqualified due to ambiguous
markings.27 Figure 1 provides an example of an ambiguous vote.

Some ballots are also disqualified due to markings which may identify
the voter, leading to potential vote-buying. Further exacerbating these
issues is the fact that election officials have a lot of leeway in choosing
which ballots to disqualify, opening the door for potential biases to
influence the count28. These issues could be avoided entirely by using a
voting scheme which provides ”cast as intended” verifiability.

Every known input method for casting the voter’s intention on a
ballot suffers from non-negligible amount of failures in practice. As
an example of another input method, consider the use of optical scan
machines. Many jurisdictions use them to interpret ballots where each
candidate has a circle next to their name and the voter is expected

27No data is available on the amount of ballots disqualified due to ambiguous markings.
However, disqualified ballots overall typically represent less than 1% of ballots in major
elections in Finland (according to data by Ministry of Justice). Ambiguous ballots are
some fraction of this, because many disqualified ballots are intentionally spoiled.

28In one instance the validity of hundreds of votes was contested:
https://www.hs.fi/politiikka/art-2000005170716.html (accessed 27.5.2019)

27

to color their chosen candidate’s circle. Voters often smudge the area
around the circle, causing failures during automatic counts, which
sometimes leads to contentious manual recounts.

Punchcard systems represent another common input method, where
a machine is used to punch holes in ballots (similar to optical scan
machines, except a machine is used to physically mark the circle). One
might imagine that the machine eliminates smudging errors, and it does,
but at the cost of introducing another error: sometimes the punched
area is not entirely cut from the ballot, leading to ambiguity again.
Additionally, both optical scan systems and punchcard systems also
suffer from voters accidentally selecting too many options. These issues
are often referred to in literature as undervoting and overvoting. [64]

Figure 1: Disqualified vote from 2012 Finnish Municipality Elections. Pos-
sibly a ”80” which was later corrected to ”81”. This image serves as an
example of problems arising in voting schemes which do not provide ”cast
as intended” verification. Photograph by Else Kyhälä, republished with
permission.

Currently available literature suggests that the only way to avoid
cast-as-intended failures is to provide cast-as-intended verifiability. Im-
plementing ”cast as intended” verifiability can also backfire in unex-
pected ways. Finland experimented with in-person e-voting in 2008
Municipality elections (in 3 municipalities). Roughly 2% of votes were
not counted29, apparently because the e-voting machine in use pre-
sented the user with an ”are you sure?” type pop-up after the user
attempted to vote, and some voters walked out without noticing this

29https://www.kho.fi/fi/index/ajankohtaista/tiedotteet/2009/04/9.4.2009-
khomaarasikunnallisvaalituusittavaksikolmessakunnassa.html (accessed 25.9.2019)

28

pop-up. Publically available documentation does not clarify why this
pop-up existed, but it is likely that the pop-up was added for ”cast as
intended” verifiability: so that users who misclicked had a chance to
change their vote. This case also illustrates the perils of adding any
type of user-facing complexity to a voting scheme, no matter how small.

The following properties (P2 and P8) are related to cast-as-intended.
In P2 the cause of the error is the voting device. In P8 the cause of the
error is the voter.

P2. Malware on voting device is unable to manipulate votes. If the
voting device is a computer or similar, voters must be convinced
of two things. First, that their personal vote has not been ma-
nipulated by malware (or bugs) on the voting device. Second,
that a large-scale malware campaign is not manipulating votes en
masse. One way to prevent these possibilities entirely is by using
a code voting scheme. Another way is by allowing voters to verify
(via secondary device) that their votes have been cast as intended
and recorded as cast, with a possibility to re-vote if errors are
discovered. However, since only a small portion of voters typically
use verification procedures, it is not sufficient to rectify only the
discovered errors. In the ”verify-and-revote” solution, we require
that voters be able to prove the existence of a large-scale malware
campaign in order to allow courts to interfere with the election
before larger damage is done. Furthermore, the ”verify-and-revote”
solution must not be susceptible to clash attacks.

P8. Voter can ensure their ballot is not accidentally spoiled. More
precisely, if the ballot is accidentally spoiled by the voter’s actions,
the voter has an ability to detect this and re-vote. (To clarify
a corner case, this definition also includes spoiling the ballot by
entering incorrect credentials in schemes like Civitas.)

29

Recorded as cast

We define recorded as cast verifiability as the ability of the voter to verify
that their vote has been recorded without alterations. It is important to
confirm that the ballot has been recorded at the time of voting, so that
problems can be corrected before the tallying phase. Network problems,
such as denial-of-service attacks, can be potential reasons for failure.

We30 consider clash attacks [53] to violate recorded-as-cast verifia-
bility. In a clash attack, an adversary shows the same verification to
multiple people who voted the same candidate. For example, if only
3 people vote for a candidate, the adversary might change 2 of the
votes and avoid detection by showing all 3 voters the same verification
(corresponding to the only real vote). A clash attack may be executed
by malware on the voting device or by the authority recording votes.

Properties P2 and P9 are related to recorded-as-cast. In P2 the
cause of the error is the voting device. In P9 the cause of the error is
misbehaving authorities.

P2. Malware on voting device is unable to manipulate votes. If the
voting device is a computer or similar, voters must be convinced
of two things. First, that their personal vote has not been ma-
nipulated by malware (or bugs) on the voting device. Second,
that a large-scale malware campaign is not manipulating votes en
masse. One way to prevent these possibilities entirely is by using
a code voting scheme. Another way is by allowing voters to verify
(via secondary device) that their votes have been cast as intended
and recorded as cast, with a possibility to re-vote if errors are
discovered. However, since only a small portion of voters typically
use verification procedures, it is not sufficient to rectify only the
discovered errors. In the ”verify-and-revote” solution, we require
that voters be able to prove the existence of a large-scale malware
campaign in order to allow courts to interfere with the election
before larger damage is done. Furthermore, the ”verify-and-revote”
solution must not be susceptible to clash attacks.

30Some authors [50] consider clash attacks to be excluded from individual verifiability,
but this would be in direct conflict with the informal definitions for individual verifiability
and recorded-as-cast verifiability. If the voter can not verify that their vote has been
recorded, then clearly, individual verifiability has not been provided.

30

P9. Voter can ensure their vote is recorded as cast. The voter has an
ability to verify that their vote has been recorded as cast (with
no susceptibility to clash attacks). If the voter receives negative
confirmation, no confirmation at all, or discovers a discrepancy
between how their vote was casted versus how it was recorded, they
can re-vote. Note that we expect this verification to be mandatory
(otherwise there is a risk that a large campaign will manipulate
many votes and only the verifying portion of voters have their
votes recorded properly). The voter may physically observe their
ballot falling in a box or the voter may rely on a trusted voting
device to show confirmation of digital receipt (corrupted voting
devices are considered separately in P2). (To clarify, we accept
any reasonable dispute resolution, even if the voter needs help of
the election officials in order to re-vote.)

Count as recorded

We define count as record verifiability as the ability of the voter to verify
that their vote has been counted in the final tally.

At first glance this verification may seem redundant if we already
have recorded-as-cast and universal verifiability. If the voter is able
to verify that their vote is part of the recorded collection of votes
(recorded-as-cast) and that the final tally of votes is correctly computed
from the recorded collection of votes (universal verifiability), it is not
immediately obvious why we need to separately verify that the voter’s
personal vote was count as recorded. However, there are cases where
the voter’s personal vote may not be counted despite these verifications.
If the voting scheme allows multiple votes to be recorded with the same
voting credentials, and only counts one of these votes, then an adversary
can potentially displace the voter’s intended vote with another one (if
they somehow gain access to voting credentials). This is why count-as-
recorded verification is necessary. Some authors, such as Neumann and
Volkamer in [67], have fallen into this trap (see section 5.9 for more
details).

Note that this is not a theoretical threat: even if the voting scheme
and its corresponding implementation are perfect, the responsibility
for handling voting credentials typically falls on the voter. Given
how insecurely average voters handle their passwords31, we have no

31According to a 2016 study by Pew Research Center, only 3% of users use a password
manager as their primary method to remember passwords. A staggering 65% rely primarily
on their memory (indicating high password reuse) while 18% primarily write their passwords
down. https://www.pewinternet.org/2017/01/26/2-password-management-and-mobile-
security/ (accessed 15.8.2019)

31

reason to believe that they would handle their voting credentials any
better. Therefore, it is reasonable to expect a certain amount of voting
credentials to be stolen in practice. In addition, voting credentials
may be stolen by a corrupt registrar or reconstructed by adversaries
due to faults in the underlying cryptography or its implementation.
Individual verifiability – and especially count-as-recorded verifiability
– is a way to reveal when these things happen, and correspondingly,
increase confidence in the votes which were legitimately counted.

Individual verifiability may seem contradictory to the goal of receipt-
freeness: how can a voter gain a proof which is convincing to themselves,
and yet unconvincing to others, even if the voter shares all his secret
key material with vote-buyers? Surprisingly, some voting schemes are
able to provide both features at the same time. For example, Civitas
uses designated-verifier proofs to provide these features (excluding
cast-as-intended). We refer to section 5.9 for more details.

The following properties in our comparison are related to count-as-
recorded:

P10. Voter can detect if their vote is displaced (deleted, replaced or
pre-empted). Even if voters can ensure that their vote is recorded,
an authority may delete their vote later. An additional threat
is present in some schemes: an adversary (such as the voter’s
spouse) may replace their vote by re-voting with their credentials.
Another variation of this threat is present in some schemes where
only the first vote counts. In that case, the adversary may pre-
empt the voter’s vote by voting before them. (We do not demand
dispute resolution for this property, because it would be inherently
impossible to provide for the ”replaced or pre-empted” conditions.)

P11. The tally is counted correctly from recorded votes. In addition,
we require adequate dispute resolution in case of discrepancies in
order to satisfy this property.

3.6.2 Universal verifiability

We define universal verifiability as the ability of anyone to verify that
the reported tally is correctly calculated from a published set of (usually
encrypted) votes. This definition is not controversial [29], although
some authors [74] do use the term to mean something else.

Universal verifiability and individual verifiability together make up
the features we referred to in section 1 when we discussed the general
idea behind verifiability: voters individually verify that their vote is
in a published set of (usually encrypted) votes, and anyone can verify

32

that the tally is correctly computed from this published set of votes.
We would like to remind readers that – although these features are
incredibly powerful – they are not sufficient. Some threats, such as
ballot stuffing, are still unaccounted for. (Ballot stuffing is discussed in
3.6.3 and various vulnerabilities are discussed in detail in section 5.)

We consider universal verifiability within the following property:

P11. The tally is counted correctly from recorded votes. In addition,
we require adequate dispute resolution in case of discrepancies in
order to satisfy this property.

3.6.3 Eligibility verifiability

We define eligibility verifiability as the ability of anyone to verify that
only legitimate votes were counted. In particular, the following threats
must be accounted for:

• Votes can not be malformed (such as a vote which adds a negative
number to a candidate’s count).

• No votes from non-eligible persons.

• At most one vote per person must affect the final tally (note that
in some systems a person may vote multiple times, but only their
first/last vote should count).

• Votes can not be undetectably added to voters who did not vote.

We consider aspects of eligibility verifiability within the following
property:

P12. No ballot stuffing. All votes which affect the final tally correspond
to a real voter, no voter corresponds to more than one vote, and
malformed votes are not counted. Furthermore, fraudulent votes
can not be added to voters who did not vote. Voters who did
not vote will be extremely unlikely to take initiative in verifying
their non-vote, so we do not accept verification mechanisms which
rely on the initiative of these non-voters. In addition, we require
dispute resolution to satisfy this property. In other words, if
ballot stuffing is detected, it must be rectified. Note that it is not
sufficient to remove only ”the detected subset” of fraudulent votes
from the tally; either all fraudulent votes must be detected and
removed or the election results must be invalidated and a new
election must be organized.

33

3.6.4 Dispute resolution

We deconstruct dispute resolution into three aspects:

1. Nonrepudiation: when the voter detects an error, they can prove
that the error has occurred.

2. Accountability: the misbehaving authority can be identified.

3. Error correction: the voting scheme includes a process to correct
the error.

Furthermore, the voter should be able to prove misbehavior without
sacrificing ballot secrecy. Our definition is largely in line with the
description in [47].

For example, suppose the voter can verify that their vote is recorded,
but it is not counted in the final tally due to misbehavior in a mix
network. In particular circumstances it may be possible for the voter
to prove an error, but it may be unclear which authority in the mix
network is misbehaving. The error correction process may involve the
court system.

Nonrepudiation and accountability provide the following benefits: [60]

1. They pave the way towards error correction when misbehavior
occurs (and subsequently, deter authorities from misbehaving).

2. They discredit fraudulent claims of authority misbehavior (and
subsequently, deter discontent voters from making fraudulent
claims).

One aspect of error correction that we were expecting to find in literature
– but didn’t – is how to proceed with error correction if there are signs
of widespread manipulation. Some voting schemes imply that only the
discovered instances of manipulation should be corrected [16]. That is
insufficient.

Suppose a voting scheme allows a verifying voter to detect manipu-
lation with 100% certainty (this is not always the case [16]). Suppose
an adversary corrupts 5% of untrusted voting machines with malware.
Suppose 10% of voters verify their votes.32 This means that 5% of votes
will be manipulated, but only 0.5% of votes will be detect as manip-
ulated. If election officials or courts simply rectify these discovered
manipulated votes, then 90% of manipulated votes still end up in the
tally, representing 4.5% of total votes.

32Empirical evidence suggests that even fewer voters bother with verification proce-
dures [8].

34

This example illustrates why it is insufficient to simply rectify the
discovered instances of manipulation. When manipulation has been
detected, all instances of manipulation must be rectified. This is not
an easy problem. One approach to solve this is to make verification
mandatory. For example, code voting systems require the voter perform
certain verification steps. Another approach is to halt the election and
arrange a new election (after investigating how votes were manipulated
and somehow preventing it from happening again). We fear that in
practice authorities would be reluctant to do this. We have already
seen Estonian officials shrug at potential signs of vote manipulation and
continue with the election regardless [91]. We have also seen Australian
officials sweep large scale verification failures under the carpet.33

We decided to bundle dispute resolution properties together with
their corresponding verifiability properties. These properties in our
comparison include dispute resolution:

P2. Malware on voting device is unable to manipulate votes. If the
voting device is a computer or similar, voters must be convinced
of two things. First, that their personal vote has not been ma-
nipulated by malware (or bugs) on the voting device. Second,
that a large-scale malware campaign is not manipulating votes en
masse. One way to prevent these possibilities entirely is by using
a code voting scheme. Another way is by allowing voters to verify
(via secondary device) that their votes have been cast as intended
and recorded as cast, with a possibility to re-vote if errors are
discovered. However, since only a small portion of voters typically
use verification procedures, it is not sufficient to rectify only the
discovered errors. In the ”verify-and-revote” solution, we require
that voters be able to prove the existence of a large-scale malware
campaign in order to allow courts to interfere with the election
before larger damage is done. Furthermore, the ”verify-and-revote”
solution must not be susceptible to clash attacks.

P8. Voter can ensure their ballot is not accidentally spoiled. More
precisely, if the ballot is accidentally spoiled by the voter’s actions,
the voter has an ability to detect this and re-vote. (To clarify
a corner case, this definition also includes spoiling the ballot by
entering incorrect credentials in schemes like Civitas.)

33https://pursuit.unimelb.edu.au/articles/where-s-the-proof-internet-voting-is-secure
(accessed on 28.9.2019)

35

P9. Voter can ensure their vote is recorded as cast. The voter has an
ability to verify that their vote has been recorded as cast (with
no susceptibility to clash attacks). If the voter receives negative
confirmation, no confirmation at all, or discovers a discrepancy
between how their vote was casted versus how it was recorded, they
can re-vote. Note that we expect this verification to be mandatory
(otherwise there is a risk that a large campaign will manipulate
many votes and only the verifying portion of voters have their
votes recorded properly). The voter may physically observe their
ballot falling in a box or the voter may rely on a trusted voting
device to show confirmation of digital receipt (corrupted voting
devices are considered separately in P2). (To clarify, we accept
any reasonable dispute resolution, even if the voter needs help of
the election officials in order to re-vote.)

P11. The tally is counted correctly from recorded votes. In addition,
we require adequate dispute resolution in case of discrepancies in
order to satisfy this property.

P12. No ballot stuffing. All votes which affect the final tally correspond
to a real voter, no voter corresponds to more than one vote, and
malformed votes are not counted. Furthermore, fraudulent votes
can not be added to voters who did not vote. Voters who did
not vote will be extremely unlikely to take initiative in verifying
their non-vote, so we do not accept verification mechanisms which
rely on the initiative of these non-voters. In addition, we require
dispute resolution to satisfy this property. In other words, if
ballot stuffing is detected, it must be rectified. Note that it is not
sufficient to remove only ”the detected subset” of fraudulent votes
from the tally; either all fraudulent votes must be detected and
removed or the election results must be invalidated and a new
election must be organized.

3.7 Availability

In order to successfully run an election, voters must be able to register
and vote, and votes must be tallied. We consider the availability of
registering, voting and tallying to be of great practical importance.

3.7.1 Denial-of-service resistance

We want to make a distinction between low-resource denial-of-service at-
tacks (henceforth DoS) and distributed denial of service attacks (DDoS).
Although a practical voting system must be sufficiently protected from

36

DDoS attacks, they are a general threat to all internet facing services.
This threat must be mitigated at network-layer, and as such, it is clearly
out of scope for a thesis on voting schemes (which are implemented at
application-layer). Furthermore, this threat is currently mitigated in
practice by large corporations, such as CloudFlare, which offer DDoS
protection to their clients. It is not infeasible to think that a real-life vot-
ing system would simply buy DDoS protection from these corporations
just as many commercial website operators do.

Although DoS and DDoS attacks are technically attacks on the
availability of the system, they can be applied selectively to attack the
integrity of the vote. For example, if carefully chosen users or regions
are denied availability while everyone else is able to vote, the outcome
of an election might change. [8]

A voting scheme must be protected from DoS attacks. For example,
some voting schemes [20] accept all votes sent by everyone and then
expend huge computational resources to validate each vote. A system
that is designed like this will essentially grind to a halt when faced with
malicious traffic from a single computer, as we will later demonstrate.

Furthermore, a voting scheme that is designed like this will be unable
to utilize network layer protection against this malicious traffic. For
example, the attacker could be routing their traffic through the Tor
network. If all traffic from Tor was simply filtered out, some legitimate
voters would be filtered out as well. Clearly it is crucial for any practical
voting scheme that the computational cost to defend against an attack
can not be disproportionate to the cost of attacking.

In addition, misbehaving authorities may refuse to accept votes or
tally. Running an election should be possible despite this. We did not
find definitions related to this in literature.34

The following property in our comparison covers both application-
level DoS threats and authority-related DoS threats:

P13. Denial-of-service resistance. Absence of any known attacks which
could be undertaken to deny availability to voting or tallying.
Attacks by authorities are included. General DDoS attacks are
excluded.

34The closest definition we found was k-authority robustness in [81], which states that
the scheme must be robust against k misbehaving authorities and unlimited misbehaving
voters. However, our definition does not embed trust assumptions (number of misbehaving
authorities is an output in our framework) and our definition is limited to availability
(their definition mixes in integrity properties).

37

4 Building blocks of voting schemes

This section describes the underlying building blocks which are com-
monly used in voting schemes. We assume the reader is already familiar
with the following topics: time complexity, cryptographic hash functions,
encryption/decryption, key generation, public-key cryptography, and
digital signatures. We encourage readers to look up35 these concepts if
they are not in fresh memory. Readers who do not have a computer
science background are encouraged to skip this section entirely. It is
possible to think of these building blocks as ”black boxes” which are
used for specific purposes without necessarily understanding how these
building blocks achieve their purpose.

4.1 Code voting

Remote e-voting typically involves voting on untrusted general-purpose
computing devices, such as home computers or smartphones. This
leads to the risks we addressed in P1 and P2: malware on the voting
device may be able to violate ballot secrecy or even manipulate votes
without detection. Code voting refers to various methods which can be
utilized to defend against these threats. Next we will provide a general
description of these ideas.

Candidate Vote code Response code
John f8h13 kLQ9x
Mike 1WWcZ orOlk
Sally MnxB5 yj474

Table 1: Illustration of a code sheet in a code voting scheme.

A voter receives a code sheet in physical mail before the election
(illustrated in table 1). When it comes time to vote, the voter opens the
voting application on their untrusted device, but instead of inputting
their choice in plain text, the voter inputs a corresponding code from
the code sheet. Malware on the device can see the code, but because
the codes have been randomly assigned and are different for each voter,
malware cannot know which candidate is represented by the code, so
malware can not violate ballot secrecy. However, malware can still
manipulate votes (for example, by pretending to send the vote without
actually sending it). This threat can be thwarted by another set of

35We recommend Christof Paar’s lecture series on cryptography:
https://www.youtube.com/watch?v=2aHkqB2-46k (accessed 22.9.2019)

38

codes: response codes. Once the vote has been sent, the server responds
with a response code, which the voter can compare to the response code
on their code sheet. Again, malware has no access to these voter-specific
codes, so it will be unable to fake a response code to the voter. [84]

4.2 Public Bulletin Board

Many voting schemes utilize a bulletin board for verifiability purposes.
For example, the bulletin board may contain all votes in their encrypted
form, the tally from encrypted votes, and a (privacy-preserving) proof
that the tally is correctly computed from the encrypted votes. It is
crucial that the bulletin board functions as an append-only log. Voters
(or other participants) must be able to post legitimate messages on the
bulletin board. No message can ever be deleted.

As we discuss voting schemes, we will simply assume that a bulletin
board with these properties exists. Although currently available liter-
ature does not offer a ”theoretically bullet-proof” construction for a
bulletin board, one might argue that various constructions are ”good
enough” in practice. Next we will discuss various ways of constructing
a bulletin board.

A bulletin board can be hosted on a traditional, untrusted web
server. Honesty against deletions can be enforced by having the bulletin
board sign messages posted to it. If a message is later deleted, a voter
or any outside observer can prove this with the signature. One way
to improve the write-availability of a bulletin board in practice is by
setting up relays. A voter can submit their vote to any subset of relays,
which will later post the vote on the bulletin board (as long as one
of the relays is honest). This idea was first introduced by Clarkson
et al. [20], who called these relays ballot boxes (but the idea can be
generalized to any data, not just votes). The relay construction can
also be leveraged in the case where the bulletin board is corrupted and
refuses to accept some legitimate votes (the relays can confirm this on
behalf of the voter). Additionally, outside organizations need to verify
that the bulletin board does not present different contents to different
users.36

An alternative implementation choice for bulletin boards is dis-
tributed ledgers, such as blockchains. These data structures (typically)
provide a trustless, append-only log, which is exactly what we need.
Unfortunately, none of the current permissionless distributed ledgers
are suitable for large-scale elections [78]. The most established of these

36In the context of voting schemes it is typically sufficient for outside organizations to
compare their copies of the bulletin board after an election has been completed.

39

ledgers, Bitcoin and Ethereum, are frequently congested by even modest
amounts of traffic37. Blockchains are also not designed for the kind of
availability guarantees which are required in voting (miners are typically
free to reject any entries to the log, such as votes for an unfavorable
candidate) [8].

Furthermore, blockchains attempt to solve a much harder problem
than what is needed for voting: irreversibility of transactions. With
financial transactions it is absolutely crucial that a transaction does
not become invalidated later. However, with voting we only require
that cheating is detected afterwards; invalidating votes or a tally is fine
as long as the errors are corrected before the result becomes official.
This is why a trusted server with digital signatures against deletions
can provide a sufficient implementation of a public bulletin board [8].

4.3 Randomized encryption

Randomized encryption is a way to prevent brute-forcing when the input
space to the encryption function is small or vulnerable to guessing [1].
For example, sometimes a vote only has two options: yes and no.
Suppose a voter encrypts plaintext ”yes” using the tallying authorities’
public key, resulting in ciphertext ”k3x6”, and sends it to the public
bulletin board. An adversary can find out the contents of the vote
easily by iterating through all possibilities: first they will try encrypting
”no” and see that results in ciphertext ”qoo9” and next they will try
encrypting ”yes” and see that results in ciphertext ”k3x6”, which is a
match. If the same input always maps to the same output and the input
space is small, it becomes trivial to brute-force encrypted messages.

We can turn a typical encryption scheme into randomized encryption
by adding a random value to the input. For example, instead of
encrypting ”yes”, we might encrypt ”yes-31Xkd823jd”. If the random
values are sufficiently unpredictable (long), then each ”yes” vote yields
a different ciphertext and an eavesdropping adversary can no longer
recover plaintext values with a naive brute-force strategy.

In practice we will often want to use a more complicated randomized
encryption algorithm, because we want to combine it with other useful
features, such as re-encryption.

37One anecdote to support this claim: https://www.bbc.com/news/technology-42237162
(accessed 25.7.2019)

40

4.4 Re-encryption

Remember that in a randomized encryption scheme an encrypted vote
can have many representations (many ciphertexts which decrypt to the
same plaintext). Sometimes, as part of vote anonymization, it is benefi-
cial to change the representation of a vote from one ciphertext to another
(without changing the vote itself). A re-encryption algorithm [34] allows
us to do exactly that. Re-encryption is possible without knowing the
plaintext or having the keys to decrypt the ciphertext.38 Re-encryption
is often utilized in mix networks, which we describe in section 4.10.

4.5 Threshold cryptosystem

A cryptosystem is a set of three protocols: key generation, encryption
and decryption. A distributed cryptosystem is a cryptosystem in which a
set of entities must cooperate to perform decryption. These definitions
are paraphrased from [23]. Typically, we would want to select mutually
distrusting entities, such as competing political parties.

A threshold cryptosystem is a distributed cryptosystem which pro-
vides a k-out-of-n quorum (at least k out of n members need to partici-
pate in any computation). Threshold cryptosystems are often used in
voting schemes for computing the tally from a collection of encrypted
votes without decrypting individual votes (we will return to how this is
possible). This construction provides the following advantages:

1. A single misbehaving authority can not violate ballot secrecy
(at least k-out-of-n authorities would have to collude to decrypt
individual votes).

2. A single misbehaving authority can not prevent the tally from
being computed (as long as k-out-of-n authorities are available,
computations can be performed).

Threshold cryptosystems were introduced by Desmedt et al. [24] in 1989.
Bell et al. [5] describe threshold cryptosystems as a ”straightforward
extension of traditional public-key cryptosystems”. Adida [1] describes
how different traditional cryptosystems (El Gamal, RSA and Paillier)
can be extended to implement a threshold cryptosystem in voting
schemes.

38Naturally, the cryptosystem must be constructed in a specific way to facilitate re-
encryption.

41

4.6 Plaintext Equivalence Test

Remember that in a randomized encryption scheme many ciphertexts
decrypt to the same plaintext. Sometimes we may want to find out
if two ciphertexts decrypt to the same plaintext – without actually
decrypting the ciphertext. A plaintext equivalence test [42] can be
utilized for this purpose. Next we will provide an example use case to
motivate and illustrate the idea.

Suppose we have a randomized encryption scheme where the decryp-
tion key is distributed among several authorities. Suppose that voters
send their votes accompanied by encrypted credentials. We want to
ensure that each credential represents a legitimate voter, but we want
to maintain ballot secrecy – we don’t want even the talliers (who hold
the distributed decryption key) to know which voter sent which vote.
The talliers could cooperate to decrypt the credentials, but then they
would uncover the identity of the voter. Instead, the talliers can utilize
a plaintext equivalence test to compare the encrypted credentials to
a list of legitimate (differently encrypted) credentials. This way the
talliers uncover only the desired information (that the vote corresponds
to some legitimate voter), without uncovering information that should
be hidden (which particular voter it was).39

4.7 Zero-knowledge proofs

Suppose we have two parties, a prover and a verifier. The prover wants
to convince the verifier that they know a particular secret, but they do
not want to reveal the secret itself or any additional information. A
construction like this is called a zero-knowledge proof [33]. A typical
zero-knowledge proof is an interactive protocol where the verifier asks
questions from the prover. If the prover knows the secret, they can
always deduce the correct answer. Otherwise they can guess. The
verifier is convinced by asking so many questions that the probability
of guessing all of them correctly is negligible.

Consider this classic example: we have two identical balls, except
one of them is red and the other one is blue. The verifier is colorblind
and doesn’t believe that the prover can differentiate the balls. The
prover wants to convince the verifier that they know a secret (which ball
is blue, which ball is red), but they do not want the verifier to learn this
secret. An interactive protocol for the proof is as follows. The verifier
puts the balls behind their back. Then the verifier shows the prover

39We omitted many crucial details required for a scheme to be viable. Our intention
here was to simply describe the general idea of a plaintext equivalence test in the context
of voting schemes. For an actual, complete example, we refer to section 5.9.

42

one of the balls, and puts it behind their back again. Then the verifier
shows another ball and asks if it is the same ball or a different ball.
This process is repeated until the verifier is convinced that the prover
knows the secret. Crucially, the verifier doesn’t learn which ball is red,
which ball is blue. They only learn that the prover can differentiate the
balls in some fashion.

Zero-knowledge proofs40 are often leveraged in voting schemes, as
we will show in 4.8, 4.9, 4.10 and 4.11.

4.8 Fiat-Shamir technique

Fiat-Shamir technique [27] is a method for collapsing interactive proofs
into non-interactive proofs. This is often desirable due to practical
problems imposed by interactivity.

For motivation, let us continue with the example that we want the
tallying authorities to prove to voters that the tally was correctly calcu-
lated. If the proof is interactive, then the authorities need to perform a
separate proof together with each voter, imposing both computational
overhead and inconvenience. By collapsing the interactive proof into
a non-interactive proof, the authorities can instead compute a single
proof on their own.

The general idea behind the technique is that the prover simulates
inputs of the verifier. This is possible when the actions of the verifier
are restricted to producing random inputs (in literature these are often
referred to as Honest-Verifier Zero-Knowledge proofs, because the verifier
is restricted from ”dishonestly” choosing adversarial inputs based on
responses of the prover [1]).

The difficult part in simulating inputs is how the prover can convince
the verifier that the inputs were truly random, and not merely selected
to deceive the verifier. The general idea to achieve this is by applying a
hash function to prior protocol messages. Output of the hash function
will be uniformly random as long as the input has sufficient entropy
(unpredictable content by voters). Some additional caveats exist. For
example, if the prover can provide part of the input to the hash function,
the prover might brute-force until it finds a favorable hash to facilitate
cheating. Several approaches exist to mitigate this issue. For example,
the prover may use a hash-based commitment scheme [30] to commit

40We do not differentiate between zero-knowledge proofs and zero-knowledge argu-
ments [1]. The former is secure against a computationally unbounded adversary, whereas
the latter is secure only against a computationally bounded adversary. Since we already
assume a computationally bounded adversary, this distinction is not relevant to us and we
will try to keep the language simple. So in some cases we will be inaccurately discussing
zero-knowledge proofs while actually referring to zero-knowledge arguments.

43

to a specific random seed at the beginning of the protocol. A different
approach is taken by Helios [2], which allows the prover to brute-force
inputs for its Fiat-Shamir construction, but has made the search space
so large that it would be computationally infeasible for the prover to
find a value which enables them to cheat.

4.9 Designated verifier proofs

An ambitious goal in certain voting schemes is to convince the voter
– and only the voter – that their vote has been counted. One way
to fulfill this goal is by using designated verifier proofs, which were
first described by Jakobsson et al. in 1996 [44]. Their solution to this
seemingly impossible challenge is brilliant in its simplicity.

Suppose that voting authority A wants to prove claim C to voter V,
but does not want the proof to be convincing to vote-buyer B. Instead
of proving ”C is true”, A proves ”C is true or this proof was created
by V”. When V receives this proof, she knows that the proof was not
created by herself, and therefore C must be true. But if V passes the
same proof to B, there is no way for B to know whether C is true or if
the proof was created by V in an attempt to deceive B.

Note that designated verifier proofs work even in the scenario where
the voter shares all their keying material with the vote-buyer. However,
we obviously need to assume that the vote-buyer is not interacting
with the voter during the time window when the voting authority is
sending the proof (if the vote-buyer can physically observe the proof
originating from the authority – as opposed to being faked by the voter
– then of course they will be convinced). In literature this requirement
is often satisfied by assuming that the registration phase is secure in
this aspect [20] [45]. We discuss this assumption further in section 3.3.4.
We omit practical implications for now; they are covered within our
discussion of Civitas.

In order to gain intuition on how these proofs can be created, let’s
start with the simplest possible example. Alice wants to convince Bob
that Alice has sent a particular message, but does not want Eve to be
convinced even if Bob and Eve collude together. In order to achieve this,
Alice can encrypt the message to Bob using an encryption key known
only to Alice and Bob (for example, using Diffie-Hellman key exchange
to generate the shared key and then using AES to communicate with
the shared key). When Bob receives the encrypted message from Alice,
Bob is convinced that Alice has sent it – after all, no-one other than
Alice and Bob know the secret key. However, if Bob passes the key and
encrypted message to Eve, Eve cannot know whether the encrypted
message was created by Alice or Bob, so Eve is not convinced that it

44

was created by Alice. As Jakobsson et al. note in [44], this method can
only convince the receiver who sent a particular message; the message
itself could still be false. As such, this is not a designated verifier proof.
A designated verifier proof would convince the receiver that the message
(a proof) is true.

Jakobsson et al. present some examples of actual designated verifier
proofs in their article [44]. As a high level example, we will briefly
describe the cryptographic building blocks that Jakobsson et al. use to
construct a designated verifier proof for an undeniable signature:

1. We begin with an interactive zero-knowledge undeniable signature
scheme as described by Chaum in [15]. If the verifier in this scheme
records a transcript of the interactive verification, the transcript
and key together can be used to convince other people. This
undesired property is what we want to eliminate from the scheme.
Additionally, we want to transform this interactive scheme into a
non-interactive scheme.

2. The scheme involves a commitment stage (where the prover com-
mits to a value with a cryptographic hash function). We modify
the commitment stage with a trap-door function tied to the ver-
ifier’s public key. A trapdoor function provides the plausibility
that the verifier could have forged any transcript arising from the
communication (or using vocabulary corresponding to the vote-
buying example, trapdoor allows the voter to forge a proof for the
vote-buyer). Trapdoor commitment schemes are described both
intuitively and formally in Fischlin’s dissertation [28]. Fischlin
demonstrates many examples for the construction of trapdoor
functions. Some of them rely on familiar cryptographic elements,
such as the Discrete Logarithm problem.

3. We collapse the interactive protocol into a non-interactive protocol
by using the Fiat-Shamir technique. Now we have a non-interactive
undeniable signature scheme with a designated verifier.

4.10 Homomorphic encryption

Suppose we have a set of encrypted votes. One might imagine that in
order to count the votes, we first have to decrypt them. This is one
approach (see section 4.11), but it is not the only approach. A form of
encryption referred to as homomorphic encryption allows anyone – with
knowledge of only the public key – to perform certain mathematical
operations on ciphertexts. The result of these operations is the same
as if the operations had been performed on corresponding plaintexts

45

and then encrypted. For example, suppose we have two ciphertexts: an
encryption of 8 and an encryption of 3. Without knowing the plaintexts,
and with only the public key, we can compute an encrypted sum of
these plaintexts: enc(8) + enc(3) = c. This encrypted sum can be
decrypted without revealing the individual inputs: dec(c) = 11.

The first homomorphic voting scheme was proposed by Benaloh [7].
Next we will describe typical steps in a homomorphic tallying scheme.

Suppose we have a distributed cryptosystem with randomized en-
cryption. In order to facilitate homomorphic tallying, ballots must be
constructed in a special way. For example, a ballot might be constructed
to contain one ciphertext per each candidate: an encryption of ”1” for
the chosen candidate, and an encryption of ”0” for every other candidate.
The voter must provide proof that each ciphertext contains either ”0”
or ”1” (and not, for example, ”-500”) and proof that at most one of the
ciphertexts contains a ”1” (zero-knowledge proofs can be utilized for
this purpose).

When the tallying begins, the talliers first compute encrypted sums
for each candidate and then jointly decrypt the encrypted sums. Due
to the homomorphic property, anyone can verify that the encrypted
sums are correct. The talliers still need to prove that decryptions of
sums are correct (again, zero-knowledge proofs can be utilized).

4.11 Mix networks

In the context of voting schemes41, mix networks can be seen as an
alternative to homomorphic encryption. Both methods can be used
to produce a verifiably correct tally from a collection of encrypted
votes, but these methods are fundamentally different: homomorphic
encryption is used to compute the tally from encrypted votes without
decrypting individual votes, whereas a mix network is used to anonymize
votes before decrypting them. The advantage of using mix networks
is that the complete set of ballots is preserved for election auditing.
However, this advantage comes at a significant cost: mix network
schemes are computationally more demanding, more difficult to design
correctly, and more difficult to implement correctly [1].

Suppose we have a collection of encrypted, legitimate votes (as
in, we have somehow verified that the set contains only votes from
eligible voters, only one vote per voter, and that all the votes are of
correct form). A mix network consists of several (mutually distrusting)
tallying authorities, who jointly anonymize and decrypt votes. An input

41Mix networks were first described by Chaum [18] in 1981. Since then, a vast field of
research has grown around them. However, we constrain our focus to the application of
mix networks in voting schemes.

46

collection of encrypted votes is transformed into an output collection of
decrypted votes in such a way that no-one – not even the voter or any
of the talliers – can tell which vote in the output corresponds to which
vote in the input.

Next we will explain two variations of mix networks: decryption mix
networks and re-encryption mix networks.

Decryption mix network

Consider a bag of onions. Each onion consists of a vote, protected
by three layers of encryption. Votes have been encrypted by voters,
each layer with a different public key. The corresponding private keys
are held by chefs (talliers) who are tasked with peeling the onions to
reveal the votes. However, the chefs are going to peel the onions in a
special way in order to preserve secrecy regarding which vote originated
from which onion. The first tallier takes the bag of onions and peels
(decrypts) the first layer of each onion, and then shakes the bag to
shuffle the order of the onions. The second tallier takes the bag and
performs the same operations: peels (decrypts) the next layer of each
onion, shakes (shuffles) the bag, and passes the bag to the next tallier.
This continues until the onions are entirely peeled (decrypted), revealing
the actual votes. Figure 2 illustrates this process.

Note that the combination of decryption and shuffling is needed to
preserve ballot secrecy. If only shuffling was used, it would be trivial
to link inputs to outputs simply by looking for the exact same ballot,
since its form doesn’t change. If only decryption was used, it would
again be trivial to link inputs to outputs, since the 4th input always
corresponds to the 4th output. But when decryption and shuffling are
performed together, both the form of ballots and the order of ballots
changes, making it impossible to link individual inputs to outputs.

In order to prevent corrupt talliers from manipulating the vote,
talliers need to prove that they did not alter any votes. We will later
explain how, but for now, think of the talliers as performing two tasks:
decryption (with proof), and shuffling. Note that the talliers do not
have to prove the randomness or secrecy of the shuffle. This is because
a single honest tallier – a single good shuffle – is enough to maintain
the privacy properties of the scheme.

47

Figure 2: Illustration of a decryption mix network. An onion represents
a vote encrypted by several layers of encryption. The illustrated vote was
encrypted by the voter using the public keys of the chefs: first with the yellow
key, then with the red key, and lastly with the blue key. Decryption must be
performed in reverse order. First the blue cook (tallier) peels (decrypts) the
blue layer, because the blue cook has the corresponding private key. The
blue cook also shuffles the onions. After the red and yellow cooks perform
the same steps, plaintext votes are revealed. Ballot secrecy is maintained,
because no cook learns which output vote corresponds to which input vote.
This illustration is original work with visual assets from freeiconspng.com
and icons8.com.

Re-encryption mix network

A re-encryption mix network separates the two tasks into consecutive
phases: a mixing phase and a decryption phase. Remember, in order
to anonymize votes, each tallier has to change both the order and the
form of ballots. In contrast to a decryption mix network, the input
collection of votes is encrypted with only a single layer of encryption,
so the talliers can no longer change the form of ballots by decrypting
layers. Instead, the talliers re-encrypt votes. Again, a proof is needed
to convince everyone that no votes were altered. So the mixing phase
consists of a chain of talliers, where each tallier mixes the votes with
shuffling and re-encryption. After that the mixing phase is complete
and the decryption phase begins.

The main advantage of re-encryption mix networks over decryption
mix networks is that threshold schemes can be used for decryption,

48

guaranteeing that the tally can be computed even if some talliers
fail to co-operate. The use of a threshold also causes some minor
vulnerabilities. If more than k-out-of-n talliers collude together, they
can decrypt credentials and votes (although they still could not associate
credentials to voters – at least not without colluding with the registrar
or voters). Note that even if all of the talliers are corrupted, they can not
fabricate the tally without being caught (in schemes which have universal
verifiability and eligibility verifiability). Another advantage is that the
tallying process can be independently re-run without compromising
ballot secrecy. [82]

The first practically efficient, verifiable mix networks in voting
schemes were described by Neff in [65] and by Furukawa and Sako
in [31]. While these schemes use zero-knowledge proofs, other kinds of
proofs have also been used in various proposals. Some schemes [17] use
a probabilistic method called randomized partial checking.

4.12 Randomized Partial Checking

Let us continue with the decryption mix network example illustrated
in figure 2. As we noted earlier, cooks in this scheme must somehow
prove that they did not manipulate any votes. Otherwise the cooks
could simply replace all input votes with freshly generated votes of their
preference. Next we will describe how this scheme can be augmented
with randomized partial checking in order to produce such proofs.

In figure 2 each cook performed one round of transformations (de-
cryption and shuffling). In the augmented scheme, illustrated in figure 3,
each cook will perform two rounds of transformations instead of one.
After a cook has committed to particular transformations, it is chal-
lenged to reveal a subset of them. A transformation is revealed by
proving that a particular output of a transformation is a legitimate
decryption of one of the inputs. The subset is selected pseudo-randomly
in such a way that no complete paths are revealed.42 If the cook tries
to manipulate votes, there is a high43 probability it will be caught.
This interactive scheme can be collapsed to non-interactive by applying
the Fiat-Shamir technique. Randomized Partial Checking was first
described by Jakobsson, Juels and Rivest [43].

42In order to assure that complete paths are never revealed, the challenger must first
pseudo-randomly select which transformations leading to the last column of onions should
be revealed. After these transformations are revealed, the choice regarding the remaining
transformations becomes unequivocal. Readers who want justification for this claim are
encouraged to simulate this selection on paper.

43In the depicted scheme a single vote could be manipulated without detection with a 50%
probability, but the scheme can be trivially altered to provide much higher probabilities.

49

Figure 3: Illustration of randomized partial checking (in the context of a
decryption mix network). After the blue cook has performed two rounds of
decryption and shuffling, it is challenged to reveal half of these transforma-
tions (illustrated as purple arrows). Note that the purple arrows have been
selected pseudo-randomly in such a way that no complete paths are revealed.
This illustration is original work with visual assets from freeiconspng.com
and icons8.com.

5 Case reviews of voting schemes

We wanted to compare a wide range of different kinds of schemes. We
review one traditional in-person paper voting scheme (Finland) and one
traditional remote paper voting scheme (Switzerland). Other schemes
that we review could not be called traditional. We review three remote
e-voting schemes which have real-world impact in Estonia, Switzerland
and Australia. We also review two academic in-person paper voting
schemes (Floating Receipts, Prêt à Voter) and two academic remote
e-voting schemes (Helios, Civitas). We usually describe several variants
of each scheme, but in the end we choose only one variant for the
comparison. Our intent was to select the best variant of each scheme,
but opinions may vary.

50

5.1 In-person paper voting in Finland

We present the Finnish paper voting scheme as a baseline for compari-
son.44 The scheme is roughly as follows: The voter walks into a polling
station and shows their identification documents to poll workers. A
poll worker attempts to confirm the authenticity of the documents,
eligibility of the voter to vote and whether the voter has already voted
(possibly using printed lists of eligible voters where a voter’s name is
crossed over after their vote is dropped in the ballot box). The poll
worker then hands the voter a ballot and the voter goes to a polling
booth to cast their vote on the ballot. Before leaving the booth the
voter seals their vote by folding it (similar to sealing a vote inside an
envelope). Then the voter walks back to the poll workers and has the
option to spoil the ballot or cast it. If the voter spoils the ballot, they
have the opportunity to re-vote. If the voter decides to cast the ballot,
it is stamped by the poll worker and placed inside the ballot box.

Finland uses (several variants of) the sort-and-stack method [32] for
counting. A preliminary count is conducted immediately after the polls
close [70]. The ballots are reorganized in stacks where each stack repre-
sents votes for a single candidate. Later, these stacks are transported
and a final count will be conducted by the local authorities [72]. The
final count overrides results from the preliminary count. Discrepancies
between these counts are commonplace and are not usually investigated
(the people performing the preliminary count are advised not to waste
time correcting small errors) [70]. In other words, only the final count
matters.

Anti-forgery and chain-of-custody methods are utilized to maintain
integrity of the physical ballots. Methods to verify integrity of the count
are not specified at the federal level [70][72]. Instead, local authorities
can choose how they conduct counting of the ballots [75]. In Helsinki,
each stack of votes is counted separately by two persons [75]. If the
results for a stack differ, both officials count the stack again until they
arrive at the same conclusion [75]. The officials rely on their memory
to arrive at the correct count for a stack of votes [75], so there is some
risk that two officials could accidentally arrive at the same incorrect
result. The results are marked on a paper spreadsheet [75], so there is
some risk that the results could be accidentally or intentionally marked
to the wrong candidate. Later, the paper spreadsheets are manually
inputted on a computer [75], opening up additional risks for accidental
and intentional manipulation of results.

44We describe the 2018 Presidential election ”election day” variant of the Finnish paper
voting scheme. Elements related to voting are described in [71] and elements related to
counting votes are described in [70] and [72].

51

“ It’s not the people who vote that count, it’s the people who
count the votes.

– Joseph Stalin ”
The authorities do not produce evidence that citizens could evaluate

in order to gain confidence in the reported election outcome (as we
noted earlier, compliance audits and risk-limiting audits would produce
an evidence trail that we consider sufficient). Regular citizens are
not allowed to observe the counting process in neither the preliminary
counting stage nor in the final counting stage [75]. However, political
parties and the Ministry of Justice can appoint observers to the counting
process [75].

Finland has relatively low corruption [99]. Known instances of vote
manipulation are extremely rare and the electoral process is highly
trusted by citizens. However, a similar scheme can fail spectacularly in
a different environment. For example, the paper voting system in India
suffered from rampant vote manipulation in the 1970s. Criminals took
over entire polling stations, chased legitimate voters away and stuffed
ballot boxes [26]. Manipulation committed by election officials are also
commonplace in many parts of the world [13][36]. We mention these
events to illustrate that although traditional paper voting appears to
work in Finland, it is a brittle scheme.

Security properties of in-person paper voting in Finland

We present security properties of voting schemes in a structured manner
in order to facilitate comparisons (section 6). Each property has a
name in italics and the trust conditions under which it holds. For
example, the name of property P3 is Voter is able to keep their ballot
as secret and we might say that under a particular scheme it holds
when ”at most one authority is misbehaving”. After that we usually
give some justification for this claim. Although names of properties are
intuitive one-sentence descriptions of properties, they should be treated
as references to section 3 where these properties are defined (section 3
contains important clarifications, assumptions, definitions and context
for these properties in order to avoid misunderstandings).

P1. Malware on voting device is unable to violate ballot secrecy. Always
holds, because the voting device is not a computer.

P2. Malware on voting device is unable to manipulate votes. Always
holds, because the voting device is a not a computer.

52

P3. Voter is able to keep their ballot as secret. Always holds, due to
physical properties of the voting booth and the ballot box. Ballot
numbering45 is not used in Finland. We discuss assumptions
related to physical security in section 3.3.1.

P4. Voter is unable to prove to a large-scale vote-buyer how they voted.
Holds as long as only few authorities are misbehaving. The voter
may attempt to convince a vote-buyer by taking a photograph
of a filled ballot, but the voter also has the ability to cheat by
spoiling the ballot and requesting another one. Local authorities
may collude with a vote-buyer to write down names of voters
who spoiled ballots (in order to validate photographs of voters
who did not spoil ballots). However, in order for a vote-buyer to
successfully buy votes at large scale, the vote-buyer would have to
corrupt several local authorities. (Although the vote-buyer could
send random people as spectators, they would find it extremely
difficult to surreptitiously authenticate which voters are spoiling
ballots and which are not. The poll workers, on the other hand,
have direct access to this information.)

P5. Voter is unable to prove to a large-scale vote-buyer that they
wasted their right to vote. Holds as long as only few authorities
are misbehaving, due to similar arguments as above.

P6. Voter is unable to prove to their spouse how they voted. Never
holds. The spouse can accompany the voter to the polling place
where they can observe that the voter requests only one ballot
from poll workers. This observation, together with a photograph
of the filled ballot, can convince the spouse exactly how the voter
voted.

P7. Voter is unable to prove to their spouse that they wasted their right
to vote. Never holds, due to same arguments as above.

P8. Voter can ensure their ballot is not accidentally spoiled. Never
holds, because the voting scheme has no mechanism to prevent
accidentally spoiling ballots. We refer to figure 1 for an example
of an accidentally spoiled ballot.

P9. Voter can ensure their vote is recorded as cast. Always holds,
because voters are physically placing their votes in the ballot box.

45Many countries, including the U.K., uses ballot numbering for audit purposes [76].
These ballot numbers directly link each voter to each ballot, allowing a corrupted authority
to break ballot secrecy at will.

53

P10. Voter can detect if their vote is displaced (deleted, replaced or
pre-empted). Holds when none of the authorities are misbehaving.
Re-voting is not allowed in the scheme. Pre-emptive replacement
would be detected by the voter as they walk into the voting
place and a poll worker tells them that they have already voted.
However, a corrupt local authority could make some individual
ballots disappear. No compliance audit exists to verify chain-of-
custody for casted ballots.

P11. The tally is counted correctly from recorded votes. Holds when none
of the authorities are misbehaving. Vote counting is performed by
many small groups (”authorities”) and a single corrupt authority
will be able to manipulate the tally (for example, by miscounting
votes). Although votes are recounted by different officials, the
latter count simply overrules the earlier count; discrepancies are
usually not investigated. Authorities do not produce convincing
evidence for the public (such as compliance audits and risk-limiting
audits). The scheme involves no verification methods (such as
universal verifiability or individual verifiability). A study has
shown that counting methods similar to those used in the Finnish
scheme produce an error rate in the order of 1% [32], so one
might argue that this property never holds in the Finnish scheme.
However, the exact counting methods used in the Finnish scheme
are in some ways different compared to the methods reported in
the study, so we decided to give the Finnish scheme the benefit of
the doubt and assume that honestly behaving authorities are able
to arrive at the correct count.

P12. No ballot stuffing. Holds when none of the authorities are mis-
behaving. Methods to prevent ballot stuffing are not sufficient.
A local group of poll workers (”1 authority”) could, for example,
allow their friends to vote multiple times. No eligibility verification
methods exist to reveal localized cheating. No compliance audit
exists to verify chain-of-custody of physical ballots and the ballot
box (or if some exist, its results are not published to the public).

P13. Denial-of-service resistance. Holds when none of the authorities
are misbehaving. No applications are involved so application-layer
DoS vulnerabilities do not exist. However, misbehaving authorities
could, for example, close polling places early under a pretense of
perceived threats.

54

5.2 In-person paper voting with Floating Receipts

Floating Receipts was first described by Rivest and Smith [80], who
explained it as a standalone scheme (which they refer to as Twin) and,
alternatively, as a modification to other schemes, such as ThreeBallot46.
The variant we consider here is essentially Twin with amendments.

We will introduce the idea behind Floating Receipts with a quick
thought experiment. Suppose we have a traditional in-person e-voting
scheme. Voters identity is verified similarly as in the Finnish paper
voting scheme. Each voter inputs their choice on an electronic voting
device, and the electronic system opaquely counts the votes. Suppose
we modified the scheme so that each voter can take home a paper receipt
of their vote. The receipt contains a unique identifier, the choice of
the voter, and a digital signature by the authorities. After the election
voters can compare their receipts to votes listed on a public bulletin
board. In case of discrepancies, they can use the digital signature on
their receipt to prove manipulation. The obvious downside is that voters
can use the receipts as proof to vote-buyers and coercers.

Now imagine a small tweak: instead of taking home their own receipt,
each voter takes home somebody else’s receipt. The probability that
manipulation will be caught does not change (assuming voters still
verify the same proportion of receipts), but voters can no longer use
the receipts as proof of how they voted (since they show how somebody
else voted). Additional constructions are necessary in order to defend
against various attacks, but this is the core idea. Next we will motivate
and explain the additional constructions.

Suppose there was only a single copy of each receipt. This would
mean that an adversary who buys receipts from voters or scours trash
bins for abandoned receipts would be able to identify a set of votes which
no-one else will be able to verify (since the adversary holds the only
copy of the receipt). If this adversary colluded with the bulletin board,
it would be able to selectively manipulate votes without detection. As
a solution against this threat, Rivest and Smith [80] propose that an
unpredictable number of copies should be made of each receipt. This
way, even if an adversary finds abandoned receipts in the trash, they
will take a risk if they modify the corresponding votes on the public
bulletin board, because additional copies of those receipts may exist.

A practical implementation of these ideas involves a semi-transparent
bin with receipts and a copying machine. The first few dozen voters
simply leave their receipts in the bin without taking anything. Once
there is a sufficient amount of receipts in the bin, subsequent voters

46We cover ThreeBallot towards the end of section 5.2.

55

will take a random receipt from the bin, copy it with the help of poll
station workers, put the original receipt back in the bin, and put their
own receipt into the bin.

Scratch strips

Suppose a voting device prints the identifier on the receipt. If this were
the case, a corrupted voting device might perform a clash attack where
multiple voters who vote for the same candidate are given identical
receipts (even though only one corresponding vote is recorded for all
those voters). In addition, voters could photograph their receipts in
the privacy of the voting booth and later use those photographs to sell
their votes. Due to these reasons, the original scheme has identifiers
pre-printed on ballots and hidden under scratch strips. The voter can
photograph the ballot in the voting booth, but the photograph will
not show the identifier because it is hidden under the scratch strip.
The voting device is no longer able to perform a clash attack, since
identifiers are pre-printed on ballots. The ballot-printing authority is
unable to perform a clash attack, since it prints ballots before knowing
which ballot will be used to vote for which candidate (if it were to print
the same identifier on multiple ballots, it would very likely be caught
during verification of receipts).

The authors omit details regarding how, where and when a vote is
recorded. The article [80] implies that the vote is recorded by a device
in the voting booth. The device confirms that the scratch strip is intact
before recording the vote. After recording the vote, the voter walks
out of the voting booth and towards the bin. The voter and a poll
work together remove the scratch strip from the ballot just before it
is dropped into the bin. This interpretation of the scheme has some
glaring weaknesses. For example, the voter could record their vote
in the booth, but remove the scratch strip and photograph the ballot
before leaving the voting booth. In this case the poll worker would
notice that the scratch strip has been tampered with, but the voter
could plausibly claim it was an accident – and in any case, the vote
would have already been recorded.

In order to prevent this vulnerability, we assume that the vote
recording device is outside the voting booth. We assume that the voter
walks into the booth to mark their ballot with a pen, folds the ballot to
protect it from prying eyes, walks out of the voting booth and inserts
the ballot into a vote recording device. We assume that the voting
device has the ability to unfold the ballot and remove the scratch strip
(or, alternatively, that the voter can do this without exposing the ballot
to surrounding people and without having the ability to memorize the

56

identifier). Once the vote recording device has accepted the ballot, it
signs the ballot with a digital signature, the voter has a possibility to
authenticate the signature, and after that the ballot is dropped into the
bin.

Another issue arising from scratch strips is the following: if the vote
recording device records the vote while the identifier is hidden under
the scratch strip, the vote recording device can not possibly know which
identifier to post on the public bulletin board later. The ability to do
this is crucial to provide verifiability of receipts. This issue could be
solved by printing another identifier on the ballot, such as a barcode.
The voting device could read the barcode and match it to the hidden
identifier by looking up a secret, pre-generated list of pairs. The variant
in our comparison includes such a bar code.

Cast-as-intended amendment

The original article [80] does not explain how the voter can perform
cast-as-intended verification. Suppose the voter selects ”John” on the
voting device. The device then asks ”Are you sure you want to vote
for John?”. The voter selects ”yes” and the device says ”Your vote for
Sally has been recorded” and prints a receipt which verifies as a vote
for Sally.

There are many ways to prevent this. One option is that we have
two devices: one device fills the ballot and another device reads it (after
the voter has verified the ballot).

Another option may be that the voter fills a paper ballot by hand,
which is then scanned by the voting device. The device would warn the
voter if the ballot is smudged, undervoted, or otherwise malformed. If
the device accepts the ballot and signs it, there is very little the device
could do at this point to deceive the voter.47

The variant in our comparison includes the latter solution: the voter
fills a paper ballot by hand and scans it with the voting device, which
refuses to accept ambiguously filled ballots.

47Theoretically, the device could display the voter one interpretation of the ballot while
actually recording a different interpretation. However, since the voting device already
declared the ballot to be unambiguous (by accepting it), the receipt corresponding to
this vote would serve as proof that the voting device misbehaved (not immediately, but
later when the receipt is verified). The authorities have some plausibility in claiming that
the errors were caused by something other than malice, but if the errors are unevenly
distributed (to affect the outcome), that plausibility fades away.

57

Amendment to increase the amount of receipts verified

Another issue with Floating Receipts is that most voters will be unlikely
to bother with the verification procedure. We know from experience
that voters generally do not bother verifying their own votes when such
verification is possible [8], so we can guess that voters will be even less
likely to verify someone else’s vote.

We propose the following amendment: voters who do not wish
to participate in auditing the election should not be forced to take
home any receipts. Instead, voters should be asked if they want to
participate or not. For each voter who does not want to participate in
the audit, a copy of a random receipt would be made and placed in
a ”helper organization bin”. Each polling place would have several of
these bins, depending on how many helper organizations are willing
to assist in auditing the election. At the end of the voting day, the
helper organizations would take home these receipts and verify them
once possible.

With this amendment, significantly more receipts would be verified
(instead of being trashed by voters who were forced to take them). We
note that this idea is not particularly novel. Rivest and Smith [80]
already discuss the role of helper organizations in possibly verifying
the receipts which are left in the main bin at the end of the voting day.
This amendment can be considered as a natural extension of that idea.
The variant in our comparison includes this amendment.

Security properties of in-person voting with Floating Receipts

P1. Malware on voting device is unable to violate ballot secrecy. Almost
always holds. Although malware on the voting device learns the
voter’s choice, they never learn the voter’s identity (because the
device is shared across all voters at a polling place). This relies
on certain physical security assumptions discussed in section 3.3.1.
We might imagine a scenario where multiple authorities collude in
order to break ballot secrecy. For example, the local authorities
could write a log with voting timestamps and voter identities and
correlate this log to timestamps recorded by the voting device.

P2. Malware on voting device is unable to manipulate votes. Always
holds. We assume that a significant fraction of receipts will be
verified. If malware on the voting device attempted to manipulate
more than a few votes in any manner, it would be incredibly likely
to be detected.

P3. Voter is able to keep their ballot as secret. Always holds. Even if all

58

of the authorities are corrupted, they will not be able to link votes
to voters. We discuss assumptions related to physical security in
section 3.3.1. Malware on the voting device is considered separately
in P1.

P4. Voter is unable to prove to a large-scale vote-buyer how they voted.
Always holds. Although the voter takes home a receipt, it will be a
copy of someone else’s receipt. The voter might photograph their
actions in the booth, but will be unable to prove to a vote-buyer
that the ballot will be casted (because the identifier on the ballot
is hidden under a scratch strip and the voter might spoil the ballot
after photographing it and request another one). If the voter
prematurely removes the scratch-strip to photograph the identifier,
the voting device will refuse to accept the vote. If the voting device
is corrupted and accepts all ballots regardless of scratch strip, the
poll workers would notice this. The poll workers could collude
with the voting device, a large-scale vote buyer, and voters who
wish to sell their votes. However, this scenario seems infeasible,
since a single honest voter who refuses to sell their vote would be
able to easily prove that the machines have been tampered with.

P5. Voter is unable to prove to a large-scale vote-buyer that they wasted
their right to vote. Always holds, due to same reasoning as above.

P6. Voter is unable to prove to their spouse how they voted. Never
holds. The voter can photograph their ballot in the booth and
the spouse can physically observe that the voter only requests one
ballot from the poll workers.

P7. Voter is unable to prove to their spouse that they wasted their right
to vote. Never holds, due to same reasoning as above.

P8. Voter can ensure their ballot is not accidentally spoiled. Always
holds. The voting device refuses to accept ambiguous votes. The
voter can ask for a fresh ballot if they accidentally spoiled their
ballot. (In addition, the voting device can also confirm the user’s
choice to them before recording the vote. As we discussed earlier,
a corrupted voting device could cheat the voter by displaying a
different interpretation of the vote on the screen while sending a
manipulated interpretation to be recorded. However, these would
be detected in verification and it would be extremely difficult for
the voting device authority to claim that such errors were non-
malicious when the voting device is supposed to outright refuse
any ambiguous ballots.)

59

P9. Voter can ensure their vote is recorded as cast. Always holds
(probabilistically), because voters can verify that a vote on a
receipt corresponds to a vote on a public bulletin board. We note
that with this property and P10, it would be nicer if voters could
verify their own votes rather than someone else’s. However, we
use probabilistic guarantees in many other places as well and see
no reason to refuse a probabilistic guarantee for these properties
(even though it ”feels” wrong). Clash attacks by voting devices
are prevented by pre-printing ID numbers on ballots and hiding
them under scratch strips. If the voter is unable to locate their
take-home receipt on the public bulletin board, the voter can
prove manipulation with the digital signature on the receipt. A
single missing vote is sufficiently strong evidence of manipulation
to invalidate the election, thus satisfying dispute resolution.

P10. Voter can detect if their vote is displaced (deleted, replaced or pre-
empted). Always holds. Replacing votes is not possible, because no
re-voting is allowed. Pre-emptive replacement would be detected
by the voter as they walk into the polling place and a poll worker
tells them that they have voted already. Deletion of votes from
the electronic record is very likely to be caught by the verification
mechanism (if authorities delete more than a few votes).

P11. The tally is counted correctly from recorded votes. Always holds.
Anyone can count the tally from the votes posted on the public
bulletin board.

P12. No ballot stuffing. Holds when none of the authorities are misbe-
having. Misbehaving poll workers would be able to add votes and
mark them to voters who did not vote.

P13. Denial-of-service resistance. Holds when none of the authorities
are misbehaving. No known DoS vulnerabilities. Any authority
would be able to deny service at will.

Justification why we did not review ThreeBallot/VAV

Readers who are familiar with voting literature may be wondering why
we did not review ThreeBallot or VAV. These schemes were described in
the same article [80] as Floating Receipts. ThreeBallot (or its generalized
variant VAV) typically gets much more attention in literature than
Floating Receipts. In fact, we were unable to find any later articles which
discuss Floating Receipts at length. This was extremely surprising given
the magnificent security properties that Floating Receipts provides.

60

We acknowledge that ThreeBallot is a fascinating and extemely novel
idea. However, it relies entirely on a trusted authority: if the public
bulletin board is corrupted, it can collude with voters to manipulate the
tally. These collusive attacks were alluded to in the original article [80]
and later explained thoroughly by Küsters, Truderung and Vogt [52].
We omit details due to lack of space but we would like to highlight that
these attacks can not be detected by outsiders and they fundamentally
break the entire scheme.

Rivest and Smith [80] note that ”one can add Floating Receipts as
an extra security feature [...] against a wide class of collusive attacks”.
This is true. However, if we compare the simple Floating Receipts
scheme to ThreeBallot with Floating Receipts, the former is simpler
and has better security properties. In other words, if we are already
using Floating Receipts, the incorporation of ThreeBallot is actually a
detriment, not an improvement.

It is unclear what advantages – if any – the ThreeBallot scheme with
Floating Receipts has over the simple Floating Receipts scheme. We
argue that the major contribution in [80] was actually Floating Receipts,
not ThreeBallot. We are dumbfounded as to why Floating Receipts has
received so little attention in literature compared to ThreeBallot.

5.3 In-person paper voting with Prêt à Voter

We have presented one traditional paper voting scheme (Finland) and
one verifiable paper voting scheme which does not heavily rely on cryp-
tography (Floating Receipts). In this section we present Prêt à Voter,
a verifiable paper voting scheme which relies heavily on cryptography.
Prêt à Voter was published in 2005 by Chaum et al. [17]. A variant of
Prêt à Voter named ”vVote” [21] has been field tested in real elections
in Australia with promising results, but it is not currently used in real
elections anywhere.48

Ballots in the scheme appear similar to traditional paper ballots:
their left side contains candidates, and the voter can mark their prefer-
ence on the right side. However, the similarities end there. Candidate
order on ballots is pseudo-randomly generated for each ballot. Although
the candidate order is plainly visible on the left side of the ballot, it is
also visible in encrypted form on the right side. A ballot is illustrated
in figure 4.

The voter chooses a ballot from a stack of pre-generated ballots and
walks into a voting booth. The voter proceeds to mark their choice,
tears the ballot in half, and scans the right half with a vote recording

48As of 28.9.2019, to the best of our knowledge.

61

Figure 4: Illustration of a ballot in Prêt à Voter. The voter has marked a
vote for Sally with an ”x” on the right half, and then separated the halves by
tearing. The left half of the ballot contains candidates in a pseudo-random
order. Only the right half is recorded for counting. The ciphertext on the
right half can be used to reconstruct the order of the candidates. This
illustration is a derivation of similar work in [8].

device in the booth. If the vote recording device is corrupted, it might
attempt to learn the voter’s choice. However, the vote recording device
never sees the left half of the ballot, and it does not have the keys
required to decrypt the ciphertext on the right half.

After recording the vote, the voter walks out of the booth, destroys
the left half together with election officials, and takes the right half
home as a receipt. The voter can later use this receipt to verify that
their vote is correctly posted on a public bulletin board: the voter
can search the bulletin board with the ciphertext (encrypted ordering),
verify that a vote for this ciphertext has been recorded, and that the row
number of the vote matches the row number on the receipt. The bulletin
board should provide only this information – photographs should be
avoided because voters may mark their ballots in unique ways. Note
that because of the pseudo-random ordering of candidates, the voter
can not use this receipt to prove how they voted.

In order to reconstruct the order of candidates on ballots, the talliers
jointly decrypt the ciphertext (utilizing a mix network with randomized
partial checking). We find it fascinating that – contrary to usual
cryptographic schemes – encryption is not applied to the input of the
voter (the chosen row number), but is instead applied to the frame of
reference (order of candidates on the ballot).

62

Improvements to the original Prêt à Voter scheme

Receipt-freeness in the original scheme [17] was completely broken:
voters were able to prove their vote by photographing the complete
ballot in the privacy of the voting booth. Vote-buyers could then
match these photographs to votes on the public bulletin board. We
have not seen this vulnerability documented anywhere in literature,
but it appears to have been accidentally fixed while fixing a different,
unrelated vulnerability.

In [82], Ryan augments the scheme with scratch strips in order
to defend against a ”chain voting”49 vulnerability. In the augmented
scheme, scratch strips are used to hide the encrypted candidate ordering.
The voter goes to the booth to mark the ballot, then tears the ballot
and walks out of the booth. Polling place workers then check that the
scratch strip on the right half is intact, remove the scratch strip and
scan the right half. This does not violate ballot secrecy, because the
left side (human-visible candidate ordering) has already been separated
from the right side. Scratch strips fix both receipt-freeness and the
chain-voting vulnerability.

The main drawback of Prêt à Voter is that ballots need to be
generated and physically handled by trusted authorities. The concern
here is related to confidentiality properties, not integrity (the authors
describe a ballot well-formedness auditing procedure to probabilistically
ensure that the displayed left-side orderings match to the encrypted
order on the right side). A corrupt ballot-generating authority or a
corrupt polling place worker could collude with adversaries to record
the candidate ordering for each ballot, thus facilitating vote-buying
and coercion. Ryan and Schneider [83] proposed a new variant of the
scheme in 2006, mainly intended to remediate this issue.

Ryan and Schneider’s [83] scheme distributes the construction of
ballots over a set of mutually distrusting entities (instead of having a
single trusted authority generate the ballots). In their scheme only a part
of the ballot is given to the voter at the polling station; the remaining

49In a chain voting attack, an adversary first somehow smuggles a single ballot outside
of a polling place. This single ballot is later leveraged to coerce an unlimited chain of
voters. The first victim is demanded to smuggle this ballot back into the polling place,
pick up a fresh ballot, go into the voting booth, fill out the first ballot by voting for a
specific candidate, and smuggle out the fresh ballot. Because the adversary has seen the
complete ballot, they can later verify from the public bulletin board that the victim voted
for the desired candidate. Now the adversary has another ballot and they can repeat the
attack on the next victim. An interesting property of this attack is that smuggling out
the first ballot is (presumably) very difficult, but smuggling out subsequent ballots is not
difficult at all (because poll workers have no idea that people are smuggling ballots into
the polling place and swapping ballots in the privacy of the voting booth). [80]

63

part is generated by mutually distrusting authorities on-demand (when
the voter wants to cast their vote).

Unfortunately, on-demand ballot generation requires polling places
to have constant electricity, internet connectivity, and availability of
the talliers to cooperate in real-time. We do not wish to make such
assumptions for in-person elections.50 Even power generation alone
would be prohibitively expensive to guarantee.51

We do incorporate one improvement from [83], however. In the
original scheme [17] the candidate ordering is reconstructed with a
decryption mix network which provides an n-out-of-n quorum. Ryan
and Schneider’s [83] variant replaces the decryption mix network with
a re-encryption mix network, which provides a k-out-of-n quorum. The
k-out-of-n quorum is preferrable due to availability issues, so the variant
we present in the comparison has this improvement.

Security properties of in-person paper voting with Prêt à Voter

P1. Malware on voting device is unable to violate ballot secrecy. Almost
always holds. Malware on the vote recording device will see which
position on the ballot was marked by the voter, but malware does
not know which position corresponds to which candidate. In order
to have this information, an adversary who has corrupted the
voting device would have to collude with k-out-of-n talliers. 52

P2. Malware on voting device is unable to manipulate votes. Always
holds. If the vote recording device modifies the vote in any way,
the voter can see this on the public bulletin board and prove the
manipulation with the receipt. In order to prevent forgeries, the
vote recording device can digitally sign the receipt (the right half
of the ballot, where a signature confirms that a vote for a specific
row number and specific ciphertext has been recorded).

50This may sound odd, given that we make similar assumptions for remote e-voting.
However, in the case of remote e-voting, the voting period is typically longer and the harm
to voters from outages is smaller.

51Ballots need to be printed on a special kind of paper, which requires special kind of
printers, which consume massive amounts of power. If we require elections to continue
even in case of power outages, we need to invest an infeasible amount in backup power
generators. [5]

52One might argue that a vote recording device is not a voting device. Voting device in
this case would be a pen and a vote recording device would be an unrelated device which
should be assessed in other properties. All of this would be technically correct, but we
feel that the distinction is rather small, so we chose to view things differently in order
to produce a more structured analysis. Note that this choice does not lead to different
conclusions, it only leads to a different way of presenting the same conclusions.

64

P3. Voter is able to keep their ballot as secret. Holds as long as at
most one authority is misbehaving. A corrupted local authority
or a corrupted ballot-generating authority could record candidate
orderings on ballots. However, neither a local authority nor a
ballot-generating authority has records on which voter casted
which ballot. In order to produce such records, a local authority
would have to collude with the server which is receiving votes
(the local authority could write down timestamps of when specific
voters casted votes, and later correlate these timestamps to server
logs). (This also explains why votes can not be posted to the
public bulletin board in real time.)

P4. Voter is unable to prove to a large-scale vote-buyer how they voted.
Holds as long as none of the authorities are misbehaving. A cor-
rupted local authority or a corrupted ballot-generating authority
could record candidate orderings and collude with an adversary
to coerce voters or buy votes. Voters would send their take-home
receipts as proof of following the adversary’s demands. The ad-
versary would compare these receipts to their known candidate
orderings to confirm this.

P5. Voter is unable to prove to a large-scale vote-buyer that they wasted
their right to vote. Holds as long as none of the authorities are
misbehaving, due to similar reasoning as above. In addition, voters
must be allowed to shift through multiple ballots before choosing
which ballots they are going to use – otherwise the scheme becomes
vulnerable to randomization attacks. In a randomization attack,
a coercer or vote-buyer demands the voter to vote for a specific
position on the ballot. For example, the voter may be demanded
to vote for whichever candidate is in first position on the ballot
that they happen to receive. The receipt the voter takes home can
serve as proof that the voter did as requested. When the voter is
allowed to shift through multiple ballots, the voter can mitigate
this attack (against adversaries who are not physically present)
by searching for a ballot which has their preferred candidate in
the preferred position.

65

P6. Voter is unable to prove to their spouse how they voted. Never
holds. The spouse can accompany the voter to the polling place
where they can observe that the voter requests only one ballot
from poll workers. This observation, together with a photograph
of the filled ballot, can convince the spouse exactly how the voter
voted.

P7. Voter is unable to prove to their spouse that they wasted their right
to vote. Never holds, due to similar reasoning as above.

P8. Voter can ensure their ballot is not accidentally spoiled. Never
holds. Although the vote recording device could refuse to scan a
ballot which is undervoted or overvoted, it can not verify that the
voter has marked their intended candidate as opposed to some
other candidate. Remember, with the scratch strip improvement,
the vote recording device operates in a public space, so it can not
display contents of a secret ballot. If the vote recording device was
to be moved back into the private voting booth, then we would have
a different problem: voters would be able to photograph complete
ballots as proof for vote-buyers. Cast-as-intended verifiability
appears fundamentally incompatible with Prêt à Voter.

P9. Voter can ensure their vote is recorded as cast. Always holds. The
voter can take the right half of the ballot home as receipt and
later confirm that it appears on the bulletin board unaltered. In
case of any discrepancies the voter can use the receipt to prove
manipulation. In order to prevent forgeries, the vote recording
device can digitally sign the receipt (the right half of the ballot,
where a signature confirms that a vote for a specific row number
and specific ciphertext has been recorded). In order to prevent the
vote recording device from deceiving the voter, the voter should
have the opportunity to confirm the authenticity of the digital
signature immediately after the signature has been printed on the
receipt.

66

P10. Voter can detect if their vote is displaced (deleted, replaced or pre-
empted). Always holds. The scheme does not enable displacing
a vote by re-voting. Displacing a vote by pre-emptively voting is
possible, but the voter can detect this by walking into the polling
place and hearing from poll workers that someone has already
voted in their name. Deletions from the bulletin board would be
noticed by helper organizations who are monitoring the bulletin
board for changes.

P11. The tally is counted correctly from recorded votes. Almost always
holds. Tallying is performed with a re-encryption mixnet by a
k-out-of-n quorum, who also produce proof of correctness by using
randomized partial checking. Even if all talliers are colluding,
they are unable to produce proofs for a manipulated tally. Ballot
well-formedness auditing procedures are sufficient to prevent a
corrupted ballot-generating authority from malforming ballots
without detection. Although the auditing authorities are com-
prised of mutually distrusting entities, they could theoretically
collude with a corrupted ballot-generating authority. Although
voters can partake in these audits even if all authorities are cor-
rupted, the particular audit methods recommended for voter use
are also vulnerable to collusive attacks [17].

P12. No ballot stuffing. Holds when none of the authorities are mis-
behaving. The scheme does not provide eligibility verifiability.
Corrupted polling place workers could add fraudulent votes to
voters who did not vote. The authors suggest an auxiliary paper
audit trail of cast votes and operational security measures to pre-
vent ballot stuffing. These measures would certainly make ballot
stuffing more difficult, but a single corrupted authority could still
engage in ballot stuffing.

P13. Denial-of-service resistance. Holds when none of the authorities are
misbehaving. Local polling authorities could shut down polling
places prematurely under the pretense of threats, for example.
(Although the k-out-of-n quorum improvement from [83] improves
the availability of tallying, it does not affect the availability of
voting.)

67

5.4 Remote paper voting in Switzerland

We present the Swiss remote paper voting scheme as a baseline for
comparison. Switzerland is an interesting case because all of its citizens
can partake in elections and referendums via remote voting (in most
other countries remote voting is restricted to absentee voters or other
specific small groups). Postal voting is of particular interest, because
the majority of voters in Switzerland send their votes by mail [95].

The general idea behind remote paper voting is the ”double enve-
lope”: Outer envelope has the identity of the voter for authentication
purposes. Once it is removed, the inner envelope contains no link to the
original voter and protects secrecy of the vote. We were able to find only
little information specific to the Swiss remote paper voting scheme.53 It
would appear that the scheme relies heavily on trusted authorities and
there are no safeguards against vote-buying and coercion. In particular,
re-voting is not allowed.

Security properties of remote paper voting in Switzerland

P1. Malware on voting device is unable to violate ballot secrecy. Always
holds, because the voting device is a not a computer.

P2. Malware on voting device is unable to manipulate votes. Always
holds, because the voting device is a not a computer.

P3. Voter is able to keep their ballot as secret. Holds when none of the
authorities are misbehaving. For example, a disgruntled worker
could open both envelopes to violate ballot secrecy.

P4. Voter is unable to prove to a large-scale vote-buyer how they voted.
Never holds. The voter can, for example, record a video of filling
the ballot and dropping it in a mailbox.

P5. Voter is unable to prove to a large-scale vote-buyer that they wasted
their right to vote. Never holds, due to same reason as above.

P6. Voter is unable to prove to their spouse how they voted. Never
holds, due to same reason as above.

P7. Voter is unable to prove to their spouse that they wasted their right
to vote. Never holds, due to same reason as above.

P8. Voter can ensure their ballot is not accidentally spoiled. Never
holds. No method exists to prevent accidentally spoiling the ballot.

53https://www.ch.ch/en/demokratie/votes/how-to-complete-a-ballot-paper-correctly/
(accessed 1.8.2019)

68

P9. Voter can ensure their vote is recorded as cast. Never holds. No
method exists to confirm to the voter that their vote is recorded.

P10. Voter can detect if their vote is displaced (deleted, replaced or
pre-empted). Holds when none of the authorities are misbehaving.
If an adversary was able to forge balloting materials, they could
pre-emptively replace votes. However, we assume that it would
be infeasible for an adversary to forge balloting materials without
colluding with the authority. Corrupt authorities (including a
single disgruntled employee) could easily destroy envelopes.

P11. The tally is counted correctly from recorded votes. Holds when none
of the authorities are misbehaving. For example, the authority
responsible for opening the inner envelope could easily change its
contents.

P12. No ballot stuffing. Holds when none of the authorities are misbe-
having. No mechanism exists to verify that ballots’ credentials
correspond to legitimate credentials on a public voter roll.

P13. Denial-of-service resistance. Holds when none of the authorities
are misbehaving. The authority can deny service at will. We do
not consider physical mail to be vulnerable to application-level
DoS attacks.

69

5.5 Remote e-voting in Switzerland

Several different remote e-voting systems have been used; we refer to [74]
for a historical perspective. However, due to sunsetting of older systems,
only one system will be relevant in the near future.54 We analyze the
voting scheme corresponding to this system, officially named sVote,
often referred to as ”the Swiss Post system”. The system is developed
by commercial vendor Scytl in collaboration with Swiss Post and is
currently in use in several cantons (regions of Switzerland).55

Clarifications

This section will be helpful to readers who intend to venture into
literature regarding the Swiss Post system. Other readers are encouraged
to skip this section.

The Swiss Post system should not be confused with voting systems
referred to as ”Geneva” or ”Neuchâtel” in literature. Although the
canton of Neuchâtel is currently using the Swiss Post system and Geneva
might also use it in the future, articles in literature which use these
terms are referring to different (sunset) systems.

As noted by Locher et al. [59], details of the sVote scheme are
scattered across numerous conflicting documents. We were unable to
find a high level description of the scheme in academic articles, on the
Swiss Post website, or on cantons’ websites. We made our best effort to
reconstruct the scheme from various sources (including other academics’
interpretations of the scheme). We note that our reconstruction may
contain errors. Furthermore, many versions of the sVote scheme exist.
We attempt to reconstruct the latest version of the strongest variant of
the scheme (often referred to as the ”100%” version, as opposed to the
”50%” and ”30%” versions).

Swiss regulators, Scytl and Swiss Post attempt to re-define individual
verifiability. Typically the term refers to voter’s ability to verify that
their vote has been appropriately counted. However, the Swiss meaning
for this term sometimes56 assumes that the server side voting software
is trusted. If the server is trusted, individual verifiability only protects
against fault on the client side, so the voter can not verify that their
vote has been appropriately counted (this assumption does not exist in
the ”100%” variant). Similarly, the Swiss attempt to re-define universal

54https://www.swissinfo.ch/eng/digital-voting_geneva-shelves-e-voting-platform-on-
cost-grounds/44577490 (accessed on 11.8.2019)

55https://www.post.ch/en/business-solutions/e-voting/success-through-
cooperation#partnercantons (accessed on 11.8.2019)

56In the case of the ”50%” variant, the server is trusted [87]. In the case of the ”100%”
scheme, the server is not trusted [86].

70

verifiability [74]. Although the term usually refers to a verification that
is available to anyone, the Swiss consider it to be a verification that is
available to privileged insiders from cantons.

Swiss regulators also coined the term complete verifiability in refer-
ence to the union of individual verifiability and universal verifiability [74].
This terminology is unfortunate on many levels. First of all, as we noted
earlier, the Swiss definitions for individual and universal verifiability
are drastically different from definitions established in literature.

Secondly, even if stricter definitions for individual and universal veri-
fiability were used, they are insufficient to provide complete verifiability
in any meaningful sense of the word. For example, outcome of the
election can be manipulated without detection by ballot stuffing when a
voting scheme provides no eligibility verifiability. Since the verification
processes in use are insufficient to verify that the outcome has not been
manipulated, clearly it is inappropriate to refer to these verification
processes as providing ”complete verifiability”.

Exacerbating these issues is the fact that Scytl erroneously claims
the concept of ”complete verifiability” to be ”equivalent” to ”end-to-end
verifiability” [74].

Scheme description

First, a trusted authority sends each voter a voter card by mail. The
voter card contains 4 items: pseudonymous credentials for logging in,
”return codes”, ”ballot casting key” and ”vote cast code”. The voter logs
on the voting website with the pseudonymous credentials and inputs
their choices in plain text. A client side web application encrypts the
choices before sending them to the server. After the voter sends their
choices, the server responds with a return code for each choice on the
ballot. The voter compares the return codes on the screen to return
codes on the voter card to confirm that their choices are cast as intended.
The voter then inputs their ballot casting key and the server responds
with a vote cast code. If the vote cast code matches to the one on the
voter card, the voter can be confident that their ballot was recorded as
cast. [95][97][86]

At the end of the election, votes are decrypted with a verifiable mix
network which produces zero-knowledge proofs of correctness. Each
server in the mix network is running a different operating system and
different software developed by independent teams. However, all of
the servers are developed and operated by the same vendor, Scytl.
Furthermore, the zero-knowledge proofs of correctness are not released
to the public – only to canton authorities. [97]

71

Discovered vulnerabilities

In 2019 the Swiss Post released portions of their source code as part of
a ”public intrusion test”.57 Shortly aftwards, researchers discovered that
the purported universal verifiability and cast-as-intended verifiability
were completely broken [55][56][54]. These vulnerabilities would allow –
among many other things – a corrupted authority to manipulate the
tally and forge a proof which seemingly proves that the tally is not
manipulated.

Swiss Post’s response to the disclosures has been abysmal. In
the same press release58 where they note that they are temporarily
suspending their e-vote platform to apply some fixes, they are celebrating
how the public intrustion test yielded only low-severity vulnerabilities.
This is technically correct, because the researchers who reported the
critical vulnerabilities were not taking part in the public intrusion
test. However, a casual reader might read the press release and get
the impression that no critical vulnerabilities were found and that the
platform has been suspended to implement minor fixes. This impression
is reinforced by the titles in the press release, which include ”Ballot box
not hacked” and ”No manipulated votes”.

In another press release59 (where they admit the severity of the
vulnerability before later backpedaling60 that it is not actually severe
at all), Swiss Post reveal that they were aware of at least one of the
vulnerabilities in 2017 and asked Scytl to fix it. We wonder how is
it possible that Swiss Post and Scytl have not fixed the vulnerability
in this time? Furthermore, why did Swiss Post, Scytl, and the Swiss
government claim during this time that the system was formally proven
secure, when clearly61 it was not?

According to trustworthy outside researchers [59], Swiss Post and
Scytl have made software fixes to remediate the vulnerability and a
confidential internal document has been released documenting the fixes.
Although we are unable to verify these claims due to confidentiality of
the document and lack of public disclosures by Swiss Post and Scytl,
we will give Swiss Post the benefit of the doubt in our comparison and

57https://www.onlinevote-pit.ch/ (accessed on 12.8.2019)
58https://www.post.ch/en/about-us/media/press-releases/2019/swiss-post-

temporarily-suspends-its-e-voting-system (accessed on 12.8.2019)
59https://www.post.ch/en/about-us/media/press-releases/2019/error-in-the-source-

code-discovered-and-rectified (accessed on 12.8.2019)
60https://www.evoting-blog.ch/en/pages/2019/new-finding-in-the-source-code (accessed

on 12.8.2019)
61The proofs published by Scytl may or may not pass mathematical scrutiny. Regardless,

they do not prove the claimed security properties of the system (as said properties turned
out to be fundamentally broken).

72

assume that these (implementation) vulnerabilities are not part of the
scheme (this is an assumption on our part, because as we noted earlier,
the scheme is not properly documented anywhere).

Security properties of remote e-voting in Switzerland

P1. Malware on voting device is unable to violate ballot secrecy. Never
holds. Voter inputs their choices in plain text on a device which
is susceptible to malware.

P2. Malware on voting device is unable to manipulate votes. Holds
when none of the authorities are misbehaving. If malware attempts
to modify the choices on the voter’s ballot, the voter will notice
this manipulation when they compare the return codes sent by the
server to the return codes that were mailed to them beforehand.
As long as the authority generating return codes is not colluding
with the adversary, the malware will be unable to fake return
codes.
Dispute resolution exists: when the voter notices that the return
codes do not match, the voter refuses to input their ballot casting
key, effectively abandoning the current ballot before depositing it
in the virtual ballot box. After this the voter can re-vote by post
or in-person. (The voter can not re-vote on another machine. If
this was possible, then the malware could simply fetch the correct
return codes as a trick to get the voter to input their ballot casting
key – then, instead of using the ballot casting key to verify the real
vote, the malware could craft a different vote with other choices
and use the ballot casting key for it instead.)
An additional threat exists and is accounted for in the design of
the scheme: the malware might record and send the vote correctly
and then refuse to send the ballot casting key, while pretending
to the voter that the ballot casting key is sent. To protect against
this threat (and potential bugs and network issues with the same
effect), the server responds to the ballot casting key with a vote
cast code. The voter again compares the code sent by the server
to a corresponding code sent to them by mail beforehand.

P3. Voter is able to keep their ballot as secret. Holds when none of
the authorities are misbehaving. The software is developed by
an exclusive vendor and the scheme is not software independent.
Therefore, the vendor could surreptitiously modify the components
of the system to collude in order to break ballot secrecy.

73

P4. Voter is unable to prove to a large-scale vote-buyer how they voted.
Never holds. The voter can convince a vote-buyer by, for example,
recording a video of the voting process. The scheme has no
mechanism to reduce vote-buying and coercion.

P5. Voter is unable to prove to a large-scale vote-buyer that they wasted
their right to vote. Never holds, due to same reason as above.

P6. Voter is unable to prove to their spouse how they voted. Never
holds, due to same reason as above.

P7. Voter is unable to prove to their spouse that they wasted their right
to vote. Never holds, due to same reason as above.

P8. Voter can ensure their ballot is not accidentally spoiled. Always
holds. If the voter has accidentally spoiled their ballot, they can
detect this by comparing return codes. The voter has dispute
resolution in the form of a re-vote by mail or in-person.

P9. Voter can ensure their vote is recorded as cast. Holds when none
of the authorities are misbehaving. The voter can verify that the
server received the vote, but the voter has to trust that the server
recorded the vote. Although the scheme has a bulletin board
where votes are posted, it appears to be private, not public.

P10. Voter can detect if their vote is displaced (deleted, replaced or
pre-empted). Holds when none of the authorities are misbehaving,
because deleting votes without detection appears to be possible.
As far as we can tell from the available documentation, there are
no mechanisms that the voter could use to verify that a corrupted
authority, such as the exclusive vendor, does not delete their
votes. Re-voting is not allowed. Pre-emptive replacement would
be detected by the voter in the web interface.

P11. The tally is counted correctly from recorded votes. Holds when
none of the authorities are misbehaving. Although votes are tallied
with a verifiable mix network, the same authority operates all the
servers in the mix network. Proof of correctness for the tally is
not universally verifiable; only a privileged auditor can verify the
proof. Presumably, the exclusive software vendor provides software
for both the servers in the mix network and the auditor, so this
corrupt authority could manipulate the tally without detection.

74

P12. No ballot stuffing. Holds when none of the authorities are mis-
behaving. We were unable to find any mechanism intended to
prevent ballot stuffing. A corrupted vendor or a corrupted author-
ity that is generating voter cards could generate credentials for
non existent voters without detection.

P13. Denial-of-service resistance. Holds when none of the authorities
are misbehaving. The authorities could deny service at will. No
application level DoS vulnerabilities are known.

5.6 Remote e-voting in Australia

Several remote e-voting systems have been used in Australia [22][25][11].
In this section we analyze only one of them: the iVote scheme used
in municipal elections in the state of New South Wales (NSW). We
made this choice because of the relatively high impact of the NSW
iVote system.62 This system was developed by commercial vendor Scytl,
which also developed the Swiss (Swiss Post) system analyzed in section
5.5. The scheme corresponding to the NSW iVote system is described in
detail in [11]. We will provide a short description and some observations.

In the NSW scheme, a voter registers to vote online (by connecting
to a trusted server in unsupervised conditions on an untrusted device).
The voter receives an iVote Number and PIN. Later, the voter can use
these secrets to authenticate to vote on a web client. After voting the
voter receives a receipt number for verification purposes. If the voter
was coerced or made a mistake, they can re-vote.

The scheme provides two separate verifications. First, a telephone
verification where the voter calls to the verification service, inputs the
iVote Number, PIN and receipt number, and the verification service
decrypts contents of the vote audibly. This verification is available only
until the end of the election. After that the second verification becomes
available. It involves the voter matching their receipt number on a list
of receipt numbers on a public web site.

With regards to re-votes, a voter can use the receipt number to
verify after the election that their vote was not displaced, although
this verification relies on trusted authorities, just as the phone verifica-
tion does. And naturally, a vote-buyer or coercer can use these same
mechanisms to verify that the voter followed their demands.

62When the system was first taken into use in 2015, it was used by over 280 000 voters [25].
Although this represents only 5% of votes cast in the election, it broke records as the
highest absolute number of votes cast in an election via remote e-voting [25]. To the best
of our knowledge, this system still represents the largest remote e-voting deployment to
date, in terms of absolute numbers of votes casted.

75

Although the creators of the system emphasize [11] that mutually
distrusting authorities run different components of the voting system,
the scheme actually has many weak points which allow a single corrupted
authority to break important security properties. As an example, the
same vendor provides software for all authorities. Because the scheme
is not software independent, a compromised vendor could manipulate
the tally without detection.

As another example, consider the telephone verification service. It
is able to connect a plaintext vote with a voter’s pseudonymous voting
credentials. The connection between these credentials and the voter’s
identity is obfuscated by a component operated by a different authority,
seemingly protecting a corrupted verification service from violating
ballot secrecy. However, we can expect verifying voters to use their
personal phone numbers to call into the verification service, allowing
the service to connect personal phone numbers to plaintext votes.

Halderman and Teague [35] note that the verification mechanisms
do not offer dispute resolution. If a voter complains about fraud, the
authorities will be unable to distinguish between a voter who has been
actually defrauded and a voter who simply lies or made a mistake.
Although voters can in some cases rectify the issue by re-voting, only
a small proportion of voters can be expected to bother in practice63.
This means that an attacker, such as a corrupted authority running
the core voting system, could selectively drop a large number of votes
for an undesired candidate. Voters who detect the error and complain
would be content after re-voting successfully, but a large number of
manipulations would go undetected. If the voters were able to prove
that manipulation has occurred, courts would be able to interfere and
halt the fraudulent election. But no such mechanism exists.

Security properties of remote e-voting in Australia

P1. Malware on voting device is unable to violate ballot secrecy. Never
holds, because the voter inputs their choice as plaintext on a device
which is susceptible to malware.

P2. Malware on voting device is unable to manipulate votes. Never
holds. The scheme has verification and re-voting, which allows
an individual voter to correct their own vote by re-voting from
another device, but the scheme is missing dispute resolution which
would prevent a large-scale malware campaign from modifying
a large number of votes from voters who do not verify. See the
definition of this property for more details.

63Only 1.7% of voters who used the iVote in 2015 used the verification service [8].

76

P3. Voter is able to keep their ballot as secret. Holds when none of the
authorities are misbehaving. Ballot secrecy could easily be broken
by the software vendor acting on its own, by the verification service
acting on its own, by the registration service acting on its own, or
by the core voting service acting on its own.

P4. Voter is unable to prove to a large-scale vote-buyer how they voted.
Never holds. The two verification processes together can prove to
a large-scale vote-buyer that the voter did as instructed. Both of
these verifications can be automated.

P5. Voter is unable to prove to a large-scale vote-buyer that they wasted
their right to vote. Never holds, due to same reasons as above.

P6. Voter is unable to prove to their spouse how they voted. Never
holds, due to same reasons as above.

P7. Voter is unable to prove to their spouse that they wasted their right
to vote. Never holds, due to same reasons as above.

P8. Voter can ensure their ballot is not accidentally spoiled. Always
holds, due to the verification service.

P9. Voter can ensure their vote is recorded as cast. Holds when none
of the authorities are misbehaving. If the core voting service is
misbehaving, it may drop the real vote while sending the copy to
the verification service. However, this would be caught during the
audit phase when it would be noticed that the set of copies on
the verification service does not match the set of copies that was
tallied. This is one area where the architectural design of mutually
distrusted components actually brings some value. However, the
scheme is not software independent and the same vendor provides
software for all the components. Therefore, a compromised vendor
on its own could cause all components to collude in a manner where
the voter receives confirmation of a vote which is not actually
recorded.

P10. Voter can detect if their vote is displaced (deleted, replaced or pre-
empted). Holds when none of the authorities are misbehaving. By
using both of the verification services, the voter can be convinced
that their vote was not displaced, as long as they trust all of the
authorities. A compromised vendor could deceive the voter (due
to similar reasoning as above).

77

P11. The tally is counted correctly from recorded votes. Holds when none
of the authorities are misbehaving. For example, the exclusive
vendor could undetectably manipulate the tally (due to similar
reasoning as above).

P12. No ballot stuffing. Holds when none of the authorities are mis-
behaving. For example, the exclusive vendor could undetectably
add votes corresponding to non existent voters (due to similar
reasoning as above).

P13. Denial-of-service resistance. Holds when none of the authorities
are misbehaving. No known DoS vulnerabilities, but any of the
authorities could deny service at will.

5.7 Remote e-voting in Estonia

Estonia is a unique case: all of its citizens have the right to vote in
significant governmental elections via remote e-voting. Remote e-voting
was first used in real elections in 2005. After that the scheme has
been improved several times. A mobile application was introduced
in 2013 to provide some aspects of individual verifiability which are
mainly intended to defend against compromised client machines [38].
Another interesting improvement was in 2017 with properties similar
to universal verifiability [37]. Our analysis is limited to the version
currently in use, which according to Estonian authorities64 is the 2017
version ”IVXV” [94].

Estonia leverages their examplary Public Key Infrastructure in their
voting system. Voters use their existing smart cards to authenticate
and sign votes. The same smart card can be used for a variety of
purposes; one can even withdraw bank loans with it. This serves as a
massive deterrent against relinquishing these smart cards to vote-buyers
or coercers.

Estonia’s approach to ballot secrecy mimics the ”double envelope”
used in remote paper voting. Voters send encrypted votes (”inner enve-
lope”) along with a digital signature (”outer envelope”) to authenticate
the voters. The server-side components which handle these votes can use
the digital signatures to link votes to individual voters, but they do not
have the key needed to decrypt votes. The components which are able
to decrypt votes are behind an airgap, and all the digital signatures are
removed before the votes are delivered for decryption. The decryption
key is not distributed across mutually distrusting parties. [94]

64https://www.valimised.ee/en/internet-voting/documents-about-internet-voting (ac-
cessed 31.7.2019)

78

This approach has no physical limitations to prevent authorities
from violating ballot secrecy (compared to physical ballot boxes, which
prevent linking votes to voters by physical limitations of the ballot box).
Likewise, this approach has no mathematical properties to prevent
authorities from violating ballot secrecy (compared to some crypto-
graphic methods, which provide mathematical guarantees under certain
assumptions). While Estonia’s approach into ballot secrecy may sound
convincing to laypersons, we would summarize it as ”trusted author-
ity promises not to look”. As we noted in section 3, when the same
authority operates two different services, we consider those services to
represent the same authority.

A smartphone application is offered as a defense against malware
on the voting device. The voter can scan a QR code up to 30 minutes
after voting to verify that their vote was cast as intended and recorded
as cast. Clash attacks are prevented by linking the vote confirmation
to the voter’s identification. [37]

As a defense against coercion, re-voting multiple times is allowed.
Only the last vote is counted, and a paper vote on election day overrides
all electronic votes. Potential coercers and vote-buyers may obtain
proof that a particular vote was sent, but they can not obtain proof
that the vote was not later displaced by a re-vote. The downside of this
defense is that voters can not obtain proof that their last vote will be
counted appropriately. For example, malware on the voting device can
be utilized to later re-vote on behalf of the voter [91].

The original scheme was modified in 2017 with aspirations to pro-
vide universal verifiability [37]. Votes are now encrypted with a (non-
distributed) El Gamal cryptosystem in order to enable tallying with
a verifiable65 re-encryption mix network. However, the verification is
available only to auditors designated by the election organizer. Fur-
thermore, while the verification seemingly provides assurances that
each decrypted vote corresponds to a recorded vote, there are no as-
surances that recorded votes were not replaced, removed, or added
surreptitiously.66

Springall et al. [91] note that procedures in Estonia’s voting scheme
appear to be designed for ”happy path” only; any deviations (which
may indicate potential vote tampering) are dealt with on an ad hoc
basis, sometimes by a single election employee. Springall et al.’s analysis
was conducted in 2014, but we can confirm that the official documenta-

65According to the official documentation [94], this verifiability is considered optional
and may not be provided in every election. No justification for this is provided. For the
purposes of our comparison, we decided to assume that this verification is in use.

66Some assurances are described in [37], but they rely on a trusted authority (which
operates two server components which are assumed to not collude with each other).

79

tion [94] as of 2019 does not contain procedures outside the happy path.
We wanted to highlight this as an interesting observation (the properties
we selected for the comparison are not affected by this observation).

Estonian officials erroneously claim in [94] that their system is ”end-
to-end verifiable: the input and output of all processes can be verified
mathematically”. Many of these processes are not verifiable and rely
entirely on trusted authorities, so the ”input and output of all processes”
can not be verified mathematically. For details we refer to our analysis
of security properties below.

In summary, Estonia’s voting scheme relies heavily on trusted au-
thorities, but has some useful verifiability and anti-coercion properties.

Security properties of remote e-voting in Estonia

P1. Malware on voting device is unable to violate ballot secrecy. Never
holds, because the voter inputs their choice as plaintext on a device
which is susceptible to malware.

P2. Malware on voting device is unable to manipulate votes. Never
holds. Although the voter can use the smartphone application to
verify their vote after voting, malware can displace the real vote
by re-voting after the 30-minute verification window has expired.

P3. Voter is able to keep their ballot as secret. Holds when none of
the authorities are misbehaving. The same authority runs all
components of the voting scheme, so they can decrypt votes at
will.

P4. Voter is unable to prove to a large-scale vote-buyer how they
voted. Holds when none of the authorities are misbehaving. If
no authorities are colluding with the vote-buyer, the voter can
send proof that they voted a specific way, but the voter is unable
to prove if that vote was counted or displaced by a re-vote. The
same authority runs all components of the voting scheme, so they
can decrypt votes at will.

P5. Voter is unable to prove to a large-scale vote-buyer that they
wasted their right to vote. Holds when none of the authorities are
misbehaving, due to same reasons as above.

P6. Voter is unable to prove to their spouse how they voted. Always
holds. The spouse is unable to collude with the authorities, and
the voter is unable to prove which vote is their last vote.

80

P7. Voter is unable to prove to their spouse that they wasted their right
to vote. Always holds due to same reasons as above.

P8. Voter can ensure their ballot is not accidentally spoiled. Always
holds. The smartphone application can verify this.

P9. Voter can ensure their vote is recorded as cast. Always holds. The
smartphone application can verify that the vote is recorded as cast
and the voter has dispute resolution in the form of a re-vote.

P10. Voter can detect if their vote is displaced (deleted, replaced or
pre-empted). Never holds. No mechanism exists to detect if a
vote is displaced by re-voting. This appears to be a conscious
design choice in order to avoid coercion. In addition, a corrupted
authority could delete some votes without detection.

P11. The tally is counted correctly from recorded votes. Holds when
none of the authorities are misbehaving. The same authority runs
all components of the voting scheme, so they can manipulate the
count at will.

P12. No ballot stuffing. Holds when none of the authorities are misbe-
having. The same authority runs all components of the voting
scheme, so they can insert new votes at will. No mechanism
exists to verify that ballots’ credentials correspond to legitimate
credentials on a public voter roll.

P13. Denial-of-service resistance. Holds when none of the authorities
are misbehaving. The scheme has proven to be resilient against
outsiders’ DoS attacks in real-world conditions. However, the
same authority runs all components of the voting scheme, so they
can deny service at will.

5.8 Remote e-voting with Helios

Out of all the cryptographic remote e-voting schemes proposed in
academic literature, Helios is the first with a practical open-source
implementation. The design philosophy behind Helios can be described
as simplicity over complexity and integrity over privacy. Although a
verifiable mixnet is used for integrity purposes, there is only a single
tallier, the centralized Helios server (so it is simply trusted to maintain
the privacy of the votes). Furthermore, Helios does not attempt to
solve the coercion problem. As such, it is intended for low-coercive
environments, such as student unions, sports clubs, or international
organizations [2].

81

Helios was published in 2008 and as of 2019 it remains the only
system of its kind67 with real-world use. For example, it is currently used
for internal elections by the International Association for Cryptologic
Research.68 There are multiple variants of Helios – our analysis is
constrained to the scheme described in the original article [2] by Adida.69

Next we will provide a short description of the voting process. A
voter begins the process by navigating to a webpage which serves the
client-side application (in-browser). The voter fills out the ballot and
the client side application encrypts it with randomized encryption. The
application commits to this encryption by displaying the user a hash of
the ciphertext. After the ballot has been encrypted, the voter has two
choices: they can either audit the ballot or seal it.

If the voter chooses to audit the ballot, the client side application
displays the ciphertext and the randomness used to encrypt the vote.
The voter can use a secondary device with third-party software to
verify that the randomness can be used to produce the given ciphertext
and that the ciphertext hashes to the given hash. This audit can
help the voter to gain confidence in the system when it is operating
honestly. However, if the audit fails, the voter has no recourse. A client-
side software running on their computer did something malicious or
erroneous. It would be very difficult for the voter to prove manipulation.

If the voter chooses to cast the ballot70, the client side application
makes a network call to authenticate the voter. If the authentication is
successful, the encrypted vote is posted on the public bulletin board.
The voter can use a secondary device to confirm that their vote was
recorded (by comparing the hash displayed on the device that they voted
with). If the vote was not delivered, the voter can try again, possibly
on a third device. If the vote was altered or the central server refuses
to accept the vote, the voter has no recourse to prove any wrongdoing.

67We are not aware of any other academic remote e-voting schemes which have both
a practical open-source implementation and also cryptographic verifiability properties.
Although such implementations may exist, we likely would have discovered them during
our research if they had any real-world use. For example, Civitas has an implementation,
but it is not practical, so it is not used anywhere. Many commercial vendors also push their
implementations, but these are typically closed source and not verifiable (see appendix C
for examples).

68https://www.iacr.org/elections/eVoting/ (accessed 13.9.2019)
69We would have preferred to analyse the latest version of Helios, but it does not appear

to be documented anywhere.
70The voter is not able to seal the audited ballot – if they audit a ballot, they must

encrypt their vote again with a different randomness. In other words, this audit process is
probabilistic. The article does not explain the rationale for this (after all, technologically
savvy voters could trivially alter the client side application to allow them to audit and seal
the same encrypted ballot).

82

Security properties of remote e-voting with Helios

P1. Malware on voting device is unable to violate ballot secrecy. Never
holds, because the voter inputs their choice as plaintext on a device
which is susceptible to malware.

P2. Malware on voting device is unable to manipulate votes. Never
holds. Malware can, for example, steal the voter’s login credentials
to vote on their behalf. In addition, Helios is vulnerable to clash
attacks where the same encrypted vote is presented as evidence to
multiple voters (who vote the same candidate) [53].

P3. Voter is able to keep their ballot as secret. Holds when none of the
authorities are misbehaving. The centralized Helios server is able
to decrypt votes at will and it is able to link votes to individual
voters.

P4. Voter is unable to prove to a large-scale vote-buyer how they voted.
Never holds. The voter can trivially prove their vote to a large scale
vote-buyer. (Some versions of Helios’ client application literally
have a ”coerce me!” button, which can be used to prove a vote to
a vote-buyer. The button was added to educate voters about the
threat of vote-buying.)

P5. Voter is unable to prove to a large-scale vote-buyer that they wasted
their right to vote. Never holds. Helios publishes a list of voters and
their encrypted votes, so anyone can always know who abstained
from voting.

P6. Voter is unable to prove to their spouse how they voted. Never
holds. The spouse can physically observe the voter casting their
vote. Re-voting is not allowed and the voter is not offered other
ways to fool a physical observer (see Civitas for an example).

P7. Voter is unable to prove to their spouse that they wasted their right
to vote. Never holds. Helios publishes a list of voters and their
encrypted votes, so anyone can always know who abstained from
voting.

P8. Voter can ensure their ballot is not accidentally spoiled. Always
holds. The client side software prevents casting malformed votes
by accident.

83

P9. Voter can ensure their vote is recorded as cast. Never holds,
because dispute resolution is not satisfied. Helios publishes a
list of votes’ hashes on a public bulletin board. The voter can
compare the hash reported by their voting device to hashes on the
bulletin board. (Server-side clash attacks are not possible, because
hashes are generated by the client. Client-side clash attacks are
considered in P2, not here.) Dispute resolution is not satisfied,
because if the voter were to notice that their vote is missing from
the public bulletin board, they have no recourse: re-voting is not
allowed and they can not prove that the server misbehaved.

P10. Voter can detect if their vote is displaced (deleted, replaced or pre-
empted). Always holds. The voter can compare the vote generated
by their voting device to votes published on the bulletin board.

P11. The tally is counted correctly from recorded votes. Always holds.
Anyone can validate the mixnet shuffle proof and decryption proof
and recount decrypted votes.

P12. No ballot stuffing. Always holds. Helios publishes a list of voters
and their encrypted votes. Anyone can trivially verify that counted
votes correspond to the list of voters. However, there is no easy
way to verify that votes linked to specific voters were actually
cast by said voters. The scheme contains an audit where auditors
sample random voters and contact them personally to request
them to verify their votes. The scheme description implies that
the election results could be invalidated if many voters report
in the audit that someone has added fraudulent votes to their
name. Although we have doubts that real election organizers will
undertake such audits, we will treat the scheme as described and
assume that these audits are undertaken and that they have the
ability to invalidate election results.

P13. Denial-of-service resistance. Never holds, due to a vulnerability
in the audit procedure (see P12). Disgruntled voters could invali-
date the election by lying to auditors that someone has voted in
their name. The scheme involves no ability to prove or disprove
such claims. To our knowledge we are the first to report this
vulnerability. (Note that if this audit procedure is weakened to
the point where disgruntled voters can’t invalidate an election,
then a different property breaks: the scheme becomes vulnerable
to ballot stuffing where votes are fraudulently added to voters
who did not vote.) In addition, the centralized Helios server could
trivially prevent voting and tallying.

84

5.9 Remote e-voting with Civitas

Civitas is a remote e-voting scheme developed in academia around 2008.
What makes Civitas interesting is its coercion-resistance properties. A
multitude of Civitas variants have been proposed in literature. We
begin with a precursor of Civitas. After that we succinctly describe
Civitas’ key differences to its precursor. After that we discuss various
weaknesses and proposed improvements. In the end we define a single
variant for the comparison.

Introduction to JCJ, a precursor of Civitas

The notion of coercion-resistance was formalized by Juels et al. in [45]
where they proposed JCJ as a coercion-resistant voting scheme. Pre-
vious voting schemes had only provided receipt-freeness, so they were
vulnerable to threats such as voters selling their voting credentials or
a spouse of a voter standing over their shoulder. JCJ tackles these
issues by introducing the concept of forged credentials: voters can
forge credentials which will be indistinguishable from valid credentials.
When a voter is coerced, they can vote with forged credentials or even
relinquish these forged credentials to the adversary. Votes casted with
forged credentials will not be counted. To clarify, we have 3 categories
of credentials: real credentials (votes will be accepted and counted),
forged credentials (votes will be accepted but not counted), and invalid
credentials (votes will not be accepted).

JCJ is based on mix network tallying. Voters send encrypted votes
to a public bulletin board. This set may contain malformed votes,
duplicates (multiple votes with the same credentials), and votes crafted
with forged credentials. After voting is complete, the tallying authorities
transform this set of votes into a smaller set of legitimate votes, but
no-one will be able to tell which vote in the input set corresponds
to which vote in the output set. This process is described with the
following steps:

1. Eliminate malformed votes. As the voters sent their votes, they
also sent proofs which can be used to verify that the encrypted
votes are correctly formed. For example, a vote is supposed to
contain a value of 0 or 1 for each candidate; if a vote contains
value 1000, it will be eliminated. Votes with invalid credentials
are considered to be malformed as well (not to be confused with
forged credentials, which are accepted at this step).

85

2. Eliminate duplicates. The talliers perform pairwise plaintext
equivalence tests on the credentials of all submitted votes, such that
only the first vote for each credential remains. (The credentials are
encrypted with randomized encryption). The tallying authority
provides proof that this elimination is done correctly. Anyone can
find out which votes were eliminated in this step.

3. Anonymization. A re-encryption mix network is used to anonymize
votes. The list of legitimate credentials is also anonymized. Zero-
knowledge proofs are published to prove that no votes or credentials
were altered.

4. Eliminate forgeries. The talliers perform pairwise plaintext equiva-
lence tests between all credentials of votes and the list of legitimate
credentials. Votes sent with forged credentials will be eliminated,
as they do not match to any of the legitimate credentials. The
talliers publish a proof of correctness. Even though the proof
identifies which votes had forged credentials, no-one is able to link
these anonymized votes back to the input set of votes, because
the votes were anonymized in the previous step.71

5. Decrypt. Only valid votes remain because invalids, duplicates
and forgeries have been pruned. Because the votes have been
anonymized, they can be decrypted without violating ballot secrecy.
All the talliers co-operate to decrypt votes so that the tally can
be computed. The decryption is publically verifiable. Everyone
can verify the tally from the decrypted votes.

These steps are illustrated in figure 5.

71The amount of votes sent with forged credentials becomes known. This represents a
theoretical security risk. For example, if the amount was zero, then anybody who watched
someone vote would be able to know that they did not use forged credentials. This risk
can be mitigated by asking some voters to send in a random amount of votes with forged
credentials.

86

Figure 5: Illustration of the tallying steps in Civitas. Yellow highlight
indicates items which are about to be eliminated. Green indicates valid
voter credentials. Voters’ credentials are always encrypted (re-encrypted in
step 3). The actual votes remain encrypted until step 5. E(1) and E(0) are
shorthand for randomized encryptions to ”1” and ”0”. This illustration is
original work.

JCJ credential verification issues

In JCJ the registrar sends the voter credentials which consist of a
corresponding public and private key (similar to typical asymmetric
cryptography). The authors treat verification of credentials as an
optional element in the voting scheme: ”We assume the trustworthiness
of [the registrar] [...] Still, if desired, [the registrar] can furnish [the voter]
with a proof that [the public key of their voting credentials corresponds
to the private key]. Where erasure of secrets by voters is not automatic,
a designated verifier proof is needed for coercion-resistance.”

As a reminder, the key idea in Civitas is that we do not have a
typical public/private key-pair – we have a special kind of key-pair
where forgeries of the private key can be made. If the voter can defraud
a vote buyer with these forgeries, there is a risk that a corrupt registrar

87

can also defraud the voter with a forgery. Next we will explain why the
verification of credentials by the voter has to be mandatory. After that
we will explain how the JCJ scheme is insufficient given the mandatory
verification of credentials.

Without verification of credentials, a corrupt registrar could pass
forged credentials to real voters and their corresponding real credentials
to a colluding adversary. Due to the coercion-resistant nature of the
scheme, none of the real voters could notice that their votes aren’t
counted. Thus a corrupt registrar would be able to entirely fabricate an
election result without anyone noticing. Due to this threat we consider
the verification of credentials to be mandatory.

Suppose verification of credentials is mandatory. The registrar uses
designated verifier proofs to prove to the voter – and only the voter –
that their voting credentials are valid. The voter is able to generate
forged credentials which will be indistinguishable to a vote-buyer (for
more information on designated verifier proofs, see section 4). In order
for the designated verifier proof to work as designed, the verifier has to
know something that the prover doesn’t know: a private key which can
be used to forge a proof. The problem is, in JCJ the voters only have
one private key, and it is generated by the prover. Since the prover also
knows the private key, they may as well send a fake key along with a
forged proof, since they can forge proofs with the real key. Now the
voter has the same issue with the proof as a potential vote-buyer: they
are unable to distinguish between a real key and a fake key.

In order to fix designated verifier proofs we need the voters to have
a second set of keys, such that the public key is known to the registrar,
but the private key isn’t. The obvious (although not the only) way to
achieve this is with public key infrastructure and proliferation of smart
cards. This would be extremely expensive to set up, and as of 2019
only one country (Estonia) has made this investment.

Suppose we have public key infrastructure to support designated
verifier proofs. The authors suggest that in practice real credentials
would be physically mailed and forged credentials could be produced
by a computer program running on a voter’s machine. This makes
real credentials easily distinguishable from forged credentials: real
credentials are on government-printed paper inside government-mailed
envelopes which have stamped postage stamps – forged credentials are
numbers on a screen. While it is theoretically possible for voters to
forge credential envelopes, it is unrealistic to expect them to do so. So
the practical problem of distributing credentials remains unsolved.

88

The authors of JCJ mostly refer to the registrar as a single, trusted
entity. In fact, a few chapters of text are dedicated to explaining why
the registrar needs to be a trusted entity. However, in appendix C they
refer to the registrar as a group of multiple servers: ”the registration
servers may if desired use designated verifier proofs to prove to each
voter that the share they send is authentic”. So it is unclear if the
registrar is a single trusted entity or a group of mutually distrusting
entities.

Even if we assume public key infrastructure to support designated
verifier proofs, and even if we assume that the practical issue of how to
distribute credentials is somehow solved, we still have the fundamental
issue of the registrar holding too much power: a single trusted entity
acting as a registrar could copy voters’ credentials to an adversary, who
could then override their votes without the voters noticing.

Civitas’ differences compared to JCJ

Civitas, based on JCJ, was first described in [20] by Clarkson et al. who
also published a prototype implementation72 accompanying the article.
Civitas differs from JCJ in several ways. The following are the most
important differences from our research perspective:

• Civitas introduces a distributed mechanism for vote storage. In-
stead of relying on a single trusted server for vote storage, mutually
distrusting entities can set up virtual ballot boxes. A voter can
submit their vote to some or all of the ballot boxes. The vote will
be recorded unless all of the ballot boxes are misbehaving.

• Civitas introduces two additional keys: a registration key and a
designation key (in addition to voter credentials). The registra-
tion key is used to authenticate the voter to the registrar. The
designation key is needed for the designated verifier proof (as we
discussed earlier, this was a missing piece in JCJ). The authors ac-
knowledge the need for public key infrastructure in any real-world
implementation of Civitas.

72https://www.cs.cornell.edu/projects/civitas/ (accessed 15.8.2019)

89

• Civitas implements n-out-of-n quorum for the registrar. This
greatly reduces the potential consequences for having a corrupt or
faulty registrar. As we noted earlier, a single-entity JCJ registrar
could fabricate the entire tally. In comparison, the worst thing a
single member of the registrar quorum in Civitas could do is refuse
issuing credentials to valid voters. While this threat is orders of
magnitude smaller, it is nonetheless a serious threat that needs to
be mitigated. The authors acknowledge this and speculate that
perhaps a mechanism could be developed to allow the voter to
prove to third parties when a registration authority is misbehaving
(currently, coercion-resistance properties prevent the voter from
being able to prove this). Küsters and Truderung [51] describe an
additional weakness in the n-out-of-n registrar quorum: a single
corrupted member of the registrar quorum would be able to mount
a forced abstention attack.

• Civitas implements a non threshold cryptosystem for tallying
(requiring n-out-of-n quorum in order to produce the tally) instead
of the threshold cryptosystem proposed in JCJ (requiring only
k-out-of-n quorum). The authors do not justify this change, but
presumably, a non threshold cryptosystem was easier to implement.
This change gives a lot of power to each of the tallying authorities:
any one of them can now prevent the counting of votes, whether
it is due to honest mistakes (such as losing the private key) or
corruption (such as politicians attempting to evoke a new election).
It seems realistic that a corrupted authority could do this one time
under the guise of technical issues and get away with it. We would
like to highlight that the distributed nature of Civitas actually
makes this threat worse compared to centralized schemes: in a
centralized scheme only one authority can halt the election, in
Civitas any one of several authorities can.

90

Civitas’ quorum improvements

We present two quorum improvements which have been proposed to
Civitas since the publication of the original article. One strengthens
availability in the registration phase, the other in the tallying phase.

1. Registration: k-out-of-n quorum instead of n-out-of-n quorum,
proposed by Shirazi et al. [89] The voter contacts a subset (possi-
bly all) of quorum members to ask for credential shares, and after
validating the responses, the voter commits to at least k shares.
The main advantage of this change is that a single misbehaving
quorum member will be unable to prevent a voter from register-
ing. (The authors also discuss a different, inferior proposal where
the voter has to commit to a subset of quorum members before
contacting them.)

2. Tallying: k-out-of-n quorum instead of n-out-of-n quorum, pro-
posed by Clarkson et al. [23] (one of the original authors of Civitas
along with two new co-authors). The main advantage of this
change is similar as above: a single misbehaving quorum member
will be unable to prevent tallying. In order to achieve this, the
authors replace Civitas’ El Gamal cryptosystem with a threshold
cryptosystem based on Shamir’s Secret Sharing [88].

Civitas’ credential handling improvements

While Civitas addressed some credential handling issues in JCJ, some
severe issues remained unsolved. Neumann et al. address these issues
from a very practical perspective and propose improvements to Civitas.
Their scheme is not conclusively defined in a single article, but rather in
two separate articles which should be considered together: [67] and [66].

Neumann et al. [67][66] propose the use of smart cards for credential
handling. Initially, the voter sets up their smart card in a supervised
environment at a registration authority’s premises (so we can be confi-
dent that voters are not coerced during the registration phase). Later,
when the voter is ready to send their vote, they need to input a pin
on their smart card. If they are coerced, they input any invalid pin,
which will be used to generate a forged credential, and if they are not
coerced, they will input the real pin, which will be used to unlock the
real credential so that the vote will be counted.

Note that these smart cards can not be used for any other purpose –
otherwise distinguishing between real and forged pins would be trivial
(for example, if a smart card was used to buy groceries online, the user
would need to get feedback if the order succeeded or not, thus revealing

91

whether the pin was real or forged). The high cost of single-purpose
smart cards would be very difficult to justify politically (compared to
general-purpose smart cards, such as those used in Estonia). Nonethe-
less, we consider single-purpose smart cards to be a realistic option,
even if it is politically difficult to push.

Neumann et al. [67][66] also propose that the card reader would have
an internal screen which could display the hash of the signed ballot. The
voter could then use another device, like a smartphone app, to verify
that the vote contains their choice. This ability would provide partial
cast-as-intended verifiability (note that the voter still could not verify
that they entered their pin correctly, so it does not provide complete
cast-as-intended verifiability). In essence, this removes the need to trust
voters’ general-purpose home computers. If malware (or user error)
lead to an incorrect choice on the ballot, the voter would detect this
with the smartphone app and simply send another vote on a different
device. Note that this still requires trust in the smart card and the
smart card reader (and trust that at most one of the voter’s devices are
compromised).

However, Neumann et al. [67][66] do not explain how the forged
credentials are generated. In particular, they do not address which
credential shares are forged. Suppose there are 5 registration authorities
and 1 of them is colluding with an adversary. If the smart card generates
5 forged credential shares, then the corrupted registration authority
will be able to notice that the voter is forging credentials. This threat
is partially mitigated by the quorum improvements proposed by Shirazi
et al. [89] (which allow the voter to request credential shares only
from a subset of registration authorities). However, this mitigation is
insufficient: an adversary may coerce the voter to request credential
shares from the corrupt registration authority, and furthermore, the
voter may not know which authorities are corrupted.

In order to improve coercion-resistance, we propose an amendment
to Neumann et al.’s [67][66] smart card scheme: the smart card should
forge only 1 credential share. In the case of 1 out of 5 authorities
being corrupted, this gives the voter an 80% chance of passing a forged
credential without detection, which is not good, but is markedly better
than the 0% chance the voter previously had.

The voter could be given the opportunity to select which registration
authority’s share will be forged. This would be useful in the event that
the voter knows which authority is corrupted. However, it is imperative
that this opportunity is only given during the supervised registration
phase, and not in unsupervised conditions. Otherwise, a physically
present coercer might be able to reveal the credential by coercing the

92

user into forging two different credentials such that a different part is
forged in each. This might be possible, for example, if the selection
of forged credential shares becomes a configurable setting in the client
application.

We would like to note that the amendment we proposed is not
particularly novel: the original Civitas scheme already describe the
voter as having the ability to choose which credential shares are forged.
We merely applied the same idea into the smart card extension of
Civitas and specified how this idea can be applied securely.

With the introduction of smart cards [67][66], Civitas becomes
vulnerable to forced abstention attacks. An adversary can simply
demand the voter to relinquish their smart card (physically, in-person).
The voter will not have a copy of the smart card (and it would be
prohibitively expensive to provide each voter with a random amount
of identical smart cards). Civitas does not have a method for revoking
and reissuing credentials. While this would be a minor issue in the
original Civitas scheme with its easily copyable paper credentials, it is
a major issue when the credentials are tied to smart cards. As far as
we know, we are the first to identify this weakness.

It is not immediately clear how a revocation policy could be imple-
mented without breaking coercion-resistance. An alternative approach
to prevent these forced abstention attacks would be some kind of re-
covery code system. A voter could have several paper copies of these
recovery codes hidden. If an adversary demands that they relinquish
these recovery codes along with the smart card, they could simply
relinquish some of the copies. An adversary has no way of discovering
how many copies there are. The voter could later initialize a new smart
card with the recovery codes. We regard this as future work.

Civitas and individual verifiability

During our literature review we found several descriptions of individual
verifiability in Civitas [20][92][67]. All of them were either incorrect,
misleading, or incomplete. Next we will walk through different properties
of individual verifiability, explain how Civitas relates to these properties,
and elaborate what is wrong with the descriptions in literature. As a
reminder, a voting scheme is said to have individual verifiability if the
voter can verify that their vote is cast as intended, recorded as cast,
and count as recorded (see section 3 for a detailed explanation).

Cast-as-intended verification is disabled by design: although the
user interface can be designed to verify the choice of voters, there is no
verification for the validity of credentials. We expect that a significant
proportion of voters will accidentally input forged credentials when they

93

intend to use real credentials, and as a result, their vote will not be
counted and there is no mechanism to enable voters to verify whether
this has happened or not. In other words, voters can not verify that
their vote has been counted, so Civitas does not provide individual
verifiability.

In the smart card extension [67] [66] of Civitas, any PIN number
will be accepted. As its authors acknowledge, there is a high risk
of accidentally typing the incorrect PIN number even if the voter is
thinking about the correct PIN number.

This risk is somewhat mitigated in the original version [20] of Civitas,
which requires the voter to input actual credentials (instead of a PIN
number which is used to generate a valid/forged credential in a smart
card). Naturally, when the voter enters actual credentials instead of a
PIN, it is very likely that a typo will be detected. However, with actual
credentials, the voter needs to generate and store forged credentials in
such a way that an adversary can not distinguish real credentials from
forged credentials – the voter can not simply write ”real” next to the
real credential. This naturally means that voters themselves will be at
risk of forgetting which credential is real and which is forged.

In other words, we are not aware of a mechanism – in any variant of
Civitas – that would prevent the voter from accidentally entering forged
credentials. This blatantly obvious weakness appears to be ignored
in the majority of articles in literature, and when it is noted, it is
mentioned in passing only. For example, Spycher et al. [92] erroneously
claim JCJ to have individual verifiability. The authors of Civitas [20]
also erroneously claim that Civitas has individual verifiability (although
they refer to this as voter verifiability, so there is some ambiguity
regarding what they mean).

Neumann and Volkamer [67] also claim Civitas to have individual
verifiability: ”Civitas ensures [...] end-to-end verifiability as composition
of universal verifiability, i.e., any observer can verify that the votes
stored in the ballot boxes are correctly tallied, and individual verifiability,
i.e., each voter can verify that his vote has been cast as intended and
stored as cast.” Note how they claim Civitas to have cast-as-intended
verifiability73. Also note how count-as-recorded verification is absent in
their definition.

73Neumann and Volkamer did add an assumption that voters will never ”mistype or
forget” their PIN numbers. It could be argued that given this assumption, Civitas has
cast-as-intended verifiability. This may be technically correct. However, we would rather
describe it as a cast-as-intended assumption, since we are merely assuming that voters cast
their votes as intended, instead of verifying it. To be fair, the authors also discuss verifying
the choice of the voter, so some aspects of cast-as-intended verifiability are provided, even
though other aspects of cast-as-intended verifiability are not provided.

94

Recorded-as-cast verification is provided by the bulletin board.
(The voter can verify that their vote appears on the bulletin board. See
section 4 for more details.)

Count-as-recorded verification is comprised of several steps. Some
of these steps can be verified by anyone, but some can be verified only
by the voter. Next we will describe each of these steps, emphasizing
who is able to perform each verification. We encourage readers to again
look up figure 5 as a visualization aid to understand this process.

1. Proof of well-formedness. The voter must verify that their vote
has survived this step. It is possible (depending on the variant
of Civitas) that malware on the user’s device has corrupted the
vote in such a way that it will not pass this well-formedness check.
Preferrably the voter should verify this (using a secondary device)
before the voting period has ended, so that the voter has the
opportunity to re-vote on a third device.

2. Elimination of votes with duplicate credentials. Proofs of correct-
ness are posted to the bulletin board. Although outside auditors
can be expected to verify these proofs, they are not sufficient to
convince the voter that their vote has survived this step. It is pos-
sible that an adversary has gained access to the voter’s credentials
(for example, the spouse of the voter may have exploited physical
access to the credentials). If the adversary has posted a vote
with the same credentials before the voter, the voter’s real vote
will be eliminated, because only the first vote for each credential
will survive this step74. This manipulation can not be caught by
outside auditors and can only be verified by the voter themselves.
As far as we know, we are the first to articulate the need for this
verification.

3. Anonymization (mixing). The voter can either verify the proofs
from this step or trust that outside auditors will verify the proof.
If the proof is correct then the voter can trust that their vote
survived the anonymization step.

74In some variants of Civitas the duplicate elimination step will keep the last vote instead
of the first vote, but only if the vote contains certain additional proofs to demonstrate that
the latter vote was posted by the same voter who posted the earlier vote. However, in our
case the voter will be unaware of any previous vote and will be unable to post such proofs,
so the first vote will still be counted and the latter vote will still be eliminated.

95

4. Elimination of votes with forged credentials. As with previous step,
the talliers provide proof that this elimination is done correctly
and the voter can either trust the auditors to verify this proof or
verify it themselves. In addition, to convince the voter that their
vote has survived this elimination, they need to be convinced that
their credentials are valid. The voter was convinced of this during
the registration step by use of designated verifier proofs.

5. Decryption of votes. As with previous step, the talliers provide
proof that can be audited by anyone. The tally can then be verified
by counting individual votes.

Naturally, these verifications would be done by client-side software. The
voter would not have to do anything more complicated than click a
button or scan a QR code.

JCJ/Civitas application-level denial-of-service attacks

The elimination of duplicate and forged credentials has quadratic time
complexity in JCJ and Civitas. Smith [90] provides back-of-the-envelope
calculations to demonstrate why this is unacceptable. As a quick
example, if an adversary were to send a billion (109) votes – feasible
with a single consumer PC – then the talliers would have to compute
a billion billion (1018) comparisons in order to eliminate duplicate
credentials (not feasible). Koenig, Haenni and Fischli [48] named
attacks of this nature board flooding attacks. Board flooding attacks
are one example of application-level denial-of-service attacks, since they
attack the availability of tallying.

Clarkson et al. reported experimental performance tests for their
Civitas implementation and conclude that ”cost, tabulation time, and
security can be practical for real-world elections” [20]. However, we argue
that tabulation time for real-world elections would not be practical due
to board flooding attacks. Despite acknowledging this vulnerability
(”Application-level denial of service is particularly problematic, because
an adversary could insert [invalid votes] to inflate tabulation time”),
their performance tests limited invalid votes to 70% of total votes. If
they had set realistic75 limitations for invalid votes, their performance

75The use of percentages here may be confusing to readers (”70% of total votes”). As
an example, suppose a country like Finland organizes an election for 5 million people.
Suppose 3 million people vote. If invalid votes represent 70% of total votes, then there are
10 million total votes and 7 million of them are invalid. A single consumer PC would be
able to generate 7 million invalid votes in less than a second. Clearly this is not a realistic
upper bound for invalid votes. We do not attempt to calculate a realistic upper bound; we
consider it obvious that quadratic time complexity is not acceptable in this case.

96

tests would have shown that the system grinds to a halt in a realistic
setting.

Many authors have proposed various performance improvements in
order to eliminate the pairwise verification and the consequent DoS
vulnerability. The first of these proposals was described by Smith
in [90], where he proposes the use of hash table lookups to reduce the
time complexity of credential verification from quadratic to linear. In
essence, Smith replaces the pairwise comparison of ciphertexts with a
global blind comparison of ciphertexts. However, generating hashes from
probabilistically encrypted credentials without compromising coercion
resistance or verifiability is quite a challenge. The resulting scheme is
complicated and has several weaknesses.

Weber et al. [101] discovered two issues in Smith’s proposal and
revised the scheme to account for them:

1. Hash collisions are possible in Smith’s scheme. They may have
the effect of turning valid votes invalid or invalid votes valid. The
revised scheme takes hash collisions into account.

2. Weber et al. claim to have found a de-anonymization vulnerability
in Smith’s scheme that is related to timestamps, but they do
not elaborate further. Smith’s scheme relies on user-generated
timestamps despite that users are not trusted and they do not
share a global clock. Perhaps the vulnerability found by Weber
et al. is somehow related to these issues. In any case, the revised
scheme no longer relies on user-generated timestamps.

Clarkson et al. [19] discovered a serious vulnerability in Smith’s scheme.
In short, the encryption method used by Smith is not fit for this
purpose. An adversary has a mathematical way of testing the validity of
credentials, entirely breaking coercion-resistance. As noted by Araujo
et al. [3], the same vulnerability also applies to the revised scheme
proposed by Weber et al. in [101].

Araujo et al. [3] propose a new JCJ-based scheme to achieve the
same performance improvement as Smith without losing any security
properties. The key idea underlying Araujo et al.’s proposal is to entirely
remove the comparison between submitted credentials and known-valid-
credentials. Whereas JCJ used pairwise comparisons and Smith/Weber
used global blind comparison, Araujo et al.’s scheme has no comparison
at all. Instead, all information needed to validate the credential is sent
along with the vote and can be validated by a quorum of talliers.

Spycher, Koenig and Haenni [92] note the following drawback in
Araujo et al.’s approach: when a public voter roll no longer exists, ballot

97

stuffing by a corrupted registrar becomes easier without detection.
However, in our opinion this is only a minor drawback. In JCJ, as we
noted earlier, a corrupted registrar already has the power to entirely
fabricate the tally, so this change does not increase the registrar’s power.
In Civitas, this change does slightly increase the power of the registrar,
but in Civitas the registrar consists of a quorum of mutually distrusting
entities and the protection provided by the quorum construction is
sufficient in our opinion. Nonetheless, it would be desirable if outside
observers were able to verify that the voter credentials of supposedly-
legitimate votes correspond to voter credentials in the voter roll. Spycher,
Koenig and Haenni [92] propose a new scheme which has this slight
advantage.

The idea behind Spycher, Koenig and Haenni’s [92] proposal is quite
simple: instead of comparing a vote’s credential to all credentials in the
voter roll (as in original JCJ and Civitas schemes), the voter identifies
which entry in the voter roll corresponds to their credential and sends
this information along with the vote.76 This allows the elimination
of forged credentials in linear time. In order to eliminate duplicate
credentials, the authors use the method from Weber et al. [101] (which
had a vulnerability in the forged-credential-elimination phase but not
in the duplicate-credential-elimination phase).

In our opinion, both the proposal from Araujo et al. [3] and the
proposal from Spycher, Koenig and Haenni [92] are viable solutions to
bring Civitas’ time complexity down from quadratic to linear. However,
these proposals only address time complexity, not storage or networking
costs. A board flooding attack may cause the public bulletin board in
JCJ/Civitas to bloat to hundreds of terabytes in size. Even if a wealthy
state can afford computing on a dataset of this size, normal people
and small organizations can not. Thus, board flooding would severely
undermine one of the key features of Civitas: verifiability. It would
be preferrable if consumer grade PCs would be sufficient to verify the
voting results. In order to achieve this, the size of the bulletin board
must be somehow constrained from bloat by adversarial inputs.

Koenig, Haenni and Fischli propose such a scheme in [48]. Instead
of allowing voters to generate a huge amount of forged credentials,
each voter would be given a random amount of dummy credentials.
The size of the bulletin board would be constrained by limiting the
maximum amount of votes per voter to the amount of credentials given
to them (the bulletin board would keep at most one vote per valid or
dummy credential, and no votes per invalid credential). If a coercer

76In order to maintain confidentiality properties, some additional constructions are
needed. We refer to [92] for details.

98

would demand a voter to give up all of their credentials, the voter
could deceive the coercer by relinquishing all of the dummy credentials
and lying that one of them is the valid credential. Due to the random
amount of credentials, the coercer has no mechanism for distinguishing
whether they received all of the credentials, or all except one.

Koenig, Haenni and Fischli describe several new vulnerabilities as a
result of incorporating dummy credentials [48]. For example, a coercer
might offer to pay for each additional credential relinquished by the
voter, thus creating an incentive to relinquish the valid credential as
well. In our opinion the vulnerabilities described by the authors would
not be serious in practice (if the random distribution is chosen carefully).
For example, if a voter is given 429 dummy credentials and 1 valid
credential, and a coercer offers to pay for each credential relinquished,
the monetary incentive for relinquishing the valid credential would
be negligible. However, there is another issue: the authors describe
their scheme in the context of JCJ and it does not appear to be easily
transferrable to Civitas due to the distributed nature of ballot boxes in
Civitas.

Clarification regarding which Civitas variant is in the comparison

We consider the following variant of Civitas: the original scheme [20]
with the following improvements:

1. Credential handling improvements by Neumann et al. [67][66]

2. Quorum improvements by Shirazi et al. [89] and Clarkson et al. [23]

Note that we do not incorporate any improvements related to DoS
resistance. This may be surprising, given that we discussed numerous
promising options earlier. We would like to incorporate the dummy
credential scheme proposed by Koenig, Haenni and Fischli [48], but their
scheme was proposed as an extension of JCJ, not Civitas, and it may be
incompatible with the distributed nature of Civitas’ ballot boxes. The
next best option to our knowledge would be the schemes by Araujo et
al. [3] and Spycher, Koenig and Haenni [92]. However, as we discussed,
their improvements are inadequate because they allow adversaries to
bloat the bulletin board. We identify Civitas’ DoS resistance as a
promising research avenue where a practical solution may be found,
possibly by building on the work of Koenig, Haenni and Fischli [48].

99

Security properties of remote e-voting with Civitas

P1. Malware on voting device is unable to violate ballot secrecy. Never
holds. The voter inputs their choice as plaintext on a device which
is susceptible to malware.

P2. Malware on voting device is unable to manipulate votes. Never
holds due to inadequate dispute resolution, but considerably im-
proved in this variant compared to the original Civitas scheme.
The voter can use a secondary device, such as a smartphone, to
verify the hash of their vote when it is displayed on the smart
card (before it is transferred to the computer). If the computer is
infected with malware (and the smart card is not), the voter can
detect that their vote has been tampered with before any damage
is done. The voter can then use a third device to vote. However,
in the event of a large-scale malware campaign, the voter has no
ability to prove that anything is wrong (to allow the courts to
interfere). This means that only those voters who bother with
the verification procedure would be able to detect the issue and
protect their votes from manipulation. In this event the large-scale
malware campaign would be able to manipulate a large amount
of votes (from voters who do not bother with the verification).

P3. Voter is able to keep their ballot as secret. Almost always holds.
In order to de-anonymize votes, k-out-of-n talliers would have to
collude with each other and the registrars (the talliers would first
collude with each other to link decrypted votes to credentials, and
after that the talliers would collude with the registrars in order to
link credentials to actual voters). Note that this property is slightly
weakened in this variant compared to the original Civitas scheme
(only k-out-of-n talliers needed to collude instead of n-out-of-n).

100

P4. Voter is unable to prove to a large-scale vote-buyer how they voted.
Almost always holds (as long as the voter can identify at least one
honest registrar). Although the voter can prove to vote-buyers that
they voted a particular way and that their vote is recorded on the
bulletin board, they can not prove that they used real credentials
to cast this vote (they could have used forged credentials to defraud
the vote-buyer). The voter can also relinquish their credentials
to the vote-buyer so that they can vote on behalf of the voter,
but the vote-buyer faces the same issue here: they can not verify
whether the credentials are real or forged.

P5. Voter is unable to prove to a large-scale vote-buyer that they wasted
their right to vote. Almost always holds (as long as the voter can
identify at least one honest registrar). Although the voter can
relinquish copies of their credentials to vote-buyers, the voter is
unable to prove that they have relinquished copies of the real
credentials (the voter could have relinquished copies of forged
credentials in order to deceive the vote-buyer).

P6. Voter is unable to prove to their spouse how they voted. Always
holds. The spouse can physically watch the voter vote, but the
voter can fool the spouse by entering an incorrect pin number
on the smart card. The spouse has no ability to differentiate
between a valid pin and an invalid pin. Note that this property
is considerably improved in this variant compared to the original
Civitas scheme. (As a reminder, we have defined the spouse as an
adversary who can not collude with corrupt authorities.)

P7. Voter is unable to prove to their spouse that they wasted their right
to vote. Never holds. The spouse can simply demand the voter
to relinquish their smart card and thus prevent the voter from
voting. No method exists to revoke and reissue credentials. Note
that this property is actually weaker in this variant compared to
the original Civitas scheme where the voter can store an arbitrary
amount of paper copies of real and forged credentials (however,
as we noted earlier, the original scheme has other, more severe
issues).

P8. Voter can ensure their ballot is not accidentally spoiled. Never
holds. Although the client side software can ensure that the ballot
is of proper form, nothing prevents the voter from spoiling the
ballot by accidentally inputting an incorrect pin on the smart
card.

101

P9. Voter can ensure their vote is recorded as cast. Always holds. The
voter can look up their vote on the public bulletin board. If the
voter can not find their vote there, they can re-vote. If the bulletin
board is discriminating against some voters by refusing to accept
their votes, the voters can prove this with the help of the digital
ballot boxes (which are run by different organizations).

P10. Voter can detect if their vote is displaced (deleted, replaced or
pre-empted). Always holds. If a vote is deleted from the public
bulletin board, organizations which monitor the bulletin board
for changes would notice this. A vote can not be replaced in this
variant of Civitas (in this variant, when multiple votes are made
with the same credentials, only the first vote counts). A vote can,
however, be pre-empted. For example, the spouse of the voter
might exploit physical access to the credentials and secretly vote
on behalf of the voter before the voter casts their real vote. The
voter can detect this by verifying that their vote has survived the
duplicate elimination -step.

P11. The tally is counted correctly from recorded votes. Always holds.
Even if all of the talliers are misbehaving, they can not forge
convincing proofs of the mixnet shuffling and decryption processes.

P12. No ballot stuffing. Almost always holds. Votes sent with invalid
credentials are pruned during the ballot well-formedness check.
Votes sent with forged credentials are pruned after anonymizing
votes. All votes which survive this pruning correspond to creden-
tials of eligible voters. If all of the registrars collude with each
other, they can steal credentials and add votes to voters who did
not actually vote.

P13. Denial-of-service resistance. Never holds. An adversary with a
single consumer PC would be able to create a modest amount
of invalid votes, which would prevent the tallying process from
completing.

6 Comparison

In this section we present a comparison table of our results, guidance
for interpretation, key takeaways from the comparison, and outlines for
future work.

102

6.1 Comparison table

Malware Vote-buying, coercion Verifiability, dispute res. DoS

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13

In-person paper voting in Finland

In-person paper voting with Floating Receipts

In-person paper voting with Prêt à Voter

Remote paper voting in Switzerland

Remote e-voting in Switzerland

Remote e-voting in Australia

Remote e-voting in Estonia

Remote e-voting with Helios

Remote e-voting with Civitas

Color descriptions Property descriptions (details in section 3.4)

Never holds, scheme does not provide this property. P1 Malware on voting device is unable to violate ballot secrecy.

Holds when none of the authorities are corrupted. P2 Malware on voting device is unable to manipulate votes.

Holds even if (any) one authority is corrupted. P3 Voter is able to keep their ballot as secret.

Holds even if all authorities are corrupted. P4 Voter is unable to prove to a large-scale vote-buyer how they voted.

P5 Voter is unable to prove to a large-scale vote-buyer that they wasted their right to vote.

P6 Voter is unable to prove to their spouse how they voted.

P7 Voter is unable to prove to their spouse that they wasted their right to vote.

P8 Voter can ensure their ballot is not accidentally spoiled.

P9 Voter can ensure their vote is recorded as cast.

P10 Voter can detect if their vote is displaced (deleted, replaced or pre-empted).

P11 The tally is counted correctly from recorded votes.

P12 No ballot stuffing.

P13 Denial-of-service resistance.

103

6.2 Guidance for interpreting results

We would like to remind readers that the names of properties in the
comparison table are just names; more precise descriptions are available
in section 3.4. Readers who are wondering how we have arrived at a
particular conclusion (”why is this red?”) will find a justification for
every single claim by clicking on the name of the scheme in question.
We hope that these descriptions will help readers confirm or dispute
our findings more easily.

Readers should avoid the temptation of mentally ”scoring” schemes
against each other based on the number of properties satisfied. The
properties in the comparison are not equally important – for example, a
violation of P7 is considered to be harmless by some authors [5], whereas
a violation of P11 means that votes have been counted incorrectly. In
addition, the value of properties depends on the use case. For example,
Helios is a great choice for low-stakes elections, even though it enables
vote-buying and coercion. High-stakes elections have clearly different
requirements.

A common talking point in discussions around e-voting is that
computer security can never be guaranteed, and therefore e-voting
should never be used. Although there is a kernel of truth to that
statement, we find it unreasonable to set such a high bar. We do not
have a perfect voting system (paper or otherwise). Comparisons should
be made between realistic options, not against idealized non-existing
options.

For example, if we are discussing remote e-voting for absent voters,
then the relevant comparison point should be whichever voting scheme
absent voters are currently using – typically a remote paper voting
scheme. If we are discussing remote e-voting for all voters, then the
relevant comparison point should be whichever voting scheme is available
to most voters – typically an in-person voting scheme. We provide advice
for policymakers in appendix A.

Aspects not illustrated in the comparison table

The ”authority” abstraction is rather coarse. In some cases manipulation
is possible by a single rogue employee, in other cases the collusion of
multiple employees is required. In addition, consider the potential scale
for manipulation. In e-voting schemes the effort required to manipulate
a small amount of votes is typically the same as the effort required to
manipulate a large amount of votes [102][8]. The same does not hold
true for typical paper voting schemes; a corrupted postal worker would
find it easy to manipulate a small amount of votes, but difficult to

104

manipulate a large amount of votes (the postal worker may not be able
to modify votes, but they would be able to selectively destroy them).
These aspects are not in any way illustrated by our comparison.

The ”voting device” abstraction is also coarse. Certain schemes
utilize consumer PCs (which are commonly infected with malware)
whereas other schemes utilize more trustworthy devices, such as com-
puters maintained by election officials for the sole purpose of voting.

To clarify, we believe the abstractions we chose are appropriate
and provide the simplifications we need to present results in a concise
manner. It is simply good to remember which aspects are inadequately
represented in the comparison.

In addition, as we explained in section 2, it is good to remember
that this thesis covers only security aspects of voting schemes. We
do not cover other aspects of voting schemes, such as usability or
understandability. Also, a voting scheme represents only part of a
voting system (though arguably the most crucial part). Aspects such
as cost estimation, adaption of best practices in software development,
or operational security controls are crucial to voting systems, but they
are not covered in this thesis.

Regarding unfair aspects of our comparison

As we noted in section 2, our intent was to provide an apples-to-apples
comparison of voting schemes. In some aspects we fell short of that
goal, and we want to be transparent about those issues.

Firstly, with regards to comparisons between existing real-world
voting schemes and non-existing theorized voting schemes, there is an
inherent unfairness in such comparisons. Although we could anticipate
that real-world schemes have to face some challenges that theorized
schemes may ignore, we were surprised by the extent of the problem.
Furthermore, we did very little to alleviate this inherent unfairness in
the comparison. We refer interested readers to the STAR-vote article [5],
which describes practical limitations in designing a real-world voting
scheme.

Secondly, we did not spend equal time researching different schemes.
Some schemes received a lot of attention, other schemes received very
little. In some cases, such as the Swiss postal voting scheme (section 5.4),
there simply was not much literature available. In other cases, such as
Civitas (section 5.9), we were really fascinated by the scheme and ended
up reading a huge number of articles out of curiosity. By spending a lot
of time on Civitas we were more likely to discover vulnerabilities, but
also more likely to select a good variant in the comparison. Hopefully
these effects cancel each other out at least to some extent.

105

The amount of variants in general turned out to be an issue. Before
our literature search we were expecting that each voting scheme would
be clearly described somewhere, perhaps on a website or perhaps in
a scientific article by its authors. Surprisingly, this was not the case.
In fact, no voting scheme in our comparison is explicitly defined in
a single location. Oftentimes the first publication of a scheme is in
some ways broken, and a multitude of follow-up articles is written in an
effort to improve the scheme (for example, JCJ/Civitas). One might
visualize these articles as a tree where different branches represent
different variants. In some cases the scheme is not completely defined
anywhere (not even by combining information from different sources).
In these cases we had to ”fill the blanks” by guessing (for example,
Finland, Floating Receipts, and both Swiss schemes). We made a huge
effort to select the best variant of each scheme, but naturally, spending
more time on one scheme is more likely to yield a better variant, so we
have been treating schemes unfairly in this sense.

6.3 Key takeaways from the comparison

In this section we discuss various observations from the comparison
table. We also relate these observations to our research questions
whenever applicable. As a reminder, we articulated the following
research questions in section 2.1:

RQ 1. What strengths and weaknesses do different schemes have relative
to each other?

RQ 2. Are some of the weaknesses a result of unavoidable tradeoffs?

RQ 3. Which voting schemes are most suitable for different use cases?

Starting with the obvious, remote e-voting schemes tend to be vulner-
able to client-side malware (P1, P2). Even though code voting and
verification features are commonly incorporated, they are often uti-
lized inadequately. We were surprised that none of the remote e-voting
schemes in our review were safe from client-side malware. In reference to
RQ2, we would characterize this as a tradeoff between security (paper)
and convenience (e-voting), although we wouldn’t characterize it as an
unavoidable tradeoff.

Availability (P13) turned out to be an issue for two academic schemes
in our review: Helios and Civitas. In the case of Helios there appears
to be a tradeoff between denial-of-service resistance and ballot stuffing
resistance; the DoS vulnerability could be fixed at the expense of
introducing a ballot stuffing vulnerability (RQ2). In the case of Civitas,

106

we reviewed a multitude of proposals for improved availability, but did
not find an adequate solution. Civitas does not appear to be practically
viable (RQ1).

Civitas provides – by far – the most extensive protection against cor-
rupt authorities (RQ3). Civitas attempts to provide coercion-resistant
voting, but none of the variants we looked at fully redeemed that
promise. In the end we settled with a variant where only P7 is violated
(the least important of our confidentiality properties) (RQ1). Civitas
appears to make an unavoidable tradeoff between coercion-resistance
properties and cast-as-intended verifiability (P8). In short, the ability
to fool coercers by typing an incorrect pin number on a smart card
opens up the possibility to accidentally typing an incorrect pin number
(RQ2). With regards to the other integrity properties (P9-P12), Civitas
is the only scheme in our review which provides all of them without a
trusted authority (RQ1).

Switzerland has a long history of widespread postal voting. In
the last decade they have made great strides towards remote e-voting.
Critics of this movement are opposing remote e-voting due to security
concerns, while proponents are claiming it to be just as secure as postal
voting. Turns out they are both right. The Swiss remote e-voting
scheme is horribly insecure and their remote paper voting scheme is just
as bad, with only minor differences. Both schemes are highly vulnerable
to vote-buying and coercion and integrity of the results depends mainly
on trusted authorities. The Australian scheme is developed by the same
vendor (Scytl), which may explain similarities.

Estonia’s scheme is the only one in our review which protects voters
from spousal coercion and similar adversaries (RQ3). This comes at a
cost of disabling one crucial verifiability (P10), but the scheme relies
heavily on trusted authorities in any case, so this tradeoff does not
actually weaken the scheme.

We were surprised to discover how well Floating Receipts fared in
comparison to all the other schemes. It was the only scheme which
was able to satisfy all integrity properties (although requiring trust in
authorities in case of P12, ballot stuffing). Given the simplicity of the
scheme and the highly desirable security properties, we are wondering
why Floating Receipts has not received more attention. (RQ1, RQ3)

107

6.4 Future work

During this thesis we outlined several potential topics for future research.
However, we thought it was best to leave these in context77 rather than
attempt to describe them in this section.

If you wish to cite this work, we encourage linking to https://www.
attejuvonen.fi/thesis/, which contains both historical and latest
versions of this thesis. We kindly ask that readers send us corrections
for any errors they spot. Evaluating all of the security properties for
all of the schemes was an excruciatingly laborious process and we fear
that we may have missed some errors despite all our diligence.

We hope that researchers will find our framework useful in evaluation
of new voting schemes. We also encourage adaptations and imitations
of our framework. We hereby license this thesis permissively under
Creative Commons Attribution 4.0 International.78

Acknowledgements

My sincerest gratitude goes out to everyone who supported me on this
long journey. My supervisor Valtteri Niemi provided invaluable feedback
on both literary aspects and technical content. Valtteri called me out
on many dubious claims in early drafts, leading to better argumentation
and referencing, more accurate claims, and in some cases to the discovery
of critical errors.

My employer Futurice provided me incredible support to graduate.
Futurice gave me a year off work to study, organized a thesis writing
camp, and supported this thesis financially. How amazing is it that
Futurice – a digital consultancy unrelated to voting schemes – supports
my thesis to this extent despite not receiving any direct benefit from
it? I also want to thank Jesse Haapoja, the instructor of our thesis
writing camp, for providing helpful guidance and literary feedback. The
pressure from the thesis writing camp was certainly a contributing
factor to finishing this thesis in time.

Any errors still remaining in this thesis should be attributed to
me and not to any of the wonderful people who provided helpful feed-
back. Finally, I want to thank my wife Marianne for all her love and
understanding throughout this exhausting writing process.

77You can locate these remarks by searching for ”future”.
78https://creativecommons.org/licenses/by/4.0/ (accessed on 27.9.2019)

108

https://www.attejuvonen.fi/thesis/
https://www.attejuvonen.fi/thesis/

References

[1] Adida, Ben: Advances in cryptographic voting systems. 2006.

[2] Adida, Ben: Helios: Web-based open-audit voting. In USENIX
security symposium, volume 17, pages 335–348, 2008.

[3] Araujo, Roberto, Foulle, Sébastien, and Traoré, Jacques: A
practical and secure coercion-resistant scheme for internet voting.
In Towards Trustworthy Elections, pages 330–342. Springer, 2010.

[4] Bannet, Jonathan, Price, David W, Rudys, Algis, Singer, Justin,
and Wallach, Dan S: Hack-a-vote: Security issues with electronic
voting systems. IEEE Security & Privacy, 2(1):32–37, 2004.

[5] Bell, Susan, Benaloh, Josh, Byrne, Michael D, DeBeauvoir, Dana,
Eakin, Bryce, Kortum, Philip, McBurnett, Neal, Pereira, Olivier,
Stark, Philip B, Wallach, Dan S, et al.: Star-vote: A secure,
transparent, auditable, and reliable voting system. In 2013
Electronic Voting Technology Workshop/Workshop on
Trustworthy Elections (EVT/WOTE 13), 2013.

[6] Benaloh, Josh and Tuinstra, Dwight: Receipt-free secret-ballot
elections. In STOC, volume 94, pages 544–553, 1994.

[7] Benaloh, Josh Daniel Cohen: Verifiable secret-ballot elections.
1989.

[8] Bernhard, Matthew, Benaloh, Josh, Halderman, J Alex, Rivest,
Ronald L, Ryan, Peter YA, Stark, Philip B, Teague, Vanessa,
Vora, Poorvi L, and Wallach, Dan S: Public evidence from secret
ballots. In International Joint Conference on Electronic Voting,
pages 84–109. Springer, 2017.

[9] Boneh, Dan: The decision diffie-hellman problem. In
International Algorithmic Number Theory Symposium, pages
48–63. Springer, 1998.

[10] Bretschneider, Jennie, Flaherty, Sean, Goodman, Susannah,
Halvorson, Mark, Johnston, Roger, Lindeman, Mark, Rivest,
Ronald L, Smith, Pam, and Stark, Philip B: Risk-limiting
post-election audits: Why and how. California, Estados Unidos:
Risk-Limiting Audits Working Group, 2012.

[11] Brightwell, Ian, Cucurull, Jordi, Galindo, David, and Guasch,
Sandra: An overview of the ivote 2015 voting system. New South

109

Wales Electoral Commission, Australia, Scytl Secure Electronic
Voting, Spain, 2015.

[12] Brusco, Valeria, Nazareno, Marcelo, and Stokes, Susan Carol:
Vote buying in argentina. Latin American Research Review,
39(2):66–88, 2004.

[13] Callen, Michael and Long, James D: Institutional corruption and
election fraud: Evidence from a field experiment in afghanistan.
American Economic Review, 105(1):354–81, 2015.

[14] Cardillo, Anthony and Essex, Aleksander: The threat of ssl/tls
stripping to online voting. In International Joint Conference on
Electronic Voting, pages 35–50. Springer, 2018.

[15] Chaum, David: Zero-knowledge undeniable signatures. In
Workshop on the Theory and Application of of Cryptographic
Techniques, pages 458–464. Springer, 1990.

[16] Chaum, David: Secret-ballot receipts: True voter-verifiable
elections. IEEE security & privacy, 2(1):38–47, 2004.

[17] Chaum, David, Ryan, Peter YA, and Schneider, Steve: A
practical voter-verifiable election scheme. In European
Symposium on Research in Computer Security, pages 118–139.
Springer, 2005.

[18] Chaum, David L: Untraceable electronic mail, return addresses,
and digital pseudonyms. Communications of the ACM,
24(2):84–90, 1981.

[19] Clarkson, Michael, Chong, Stephen, and Myers, Andrew: Civitas:
A secure remote voting system. In Dagstuhl Seminar Proceedings.
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2008.

[20] Clarkson, Michael R, Chong, Stephen, and Myers, Andrew C:
Civitas: Toward a secure voting system. In 2008 IEEE
Symposium on Security and Privacy (sp 2008), pages 354–368.
IEEE, 2008.

[21] Culnane, Chris, Ryan, Peter YA, Schneider, Steve, and Teague,
Vanessa: vvote: a verifiable voting system. ACM Transactions on
Information and System Security (TISSEC), 18(1):3, 2015.

[22] Culnane, Chris, Ryan, Peter YA, Schneider, Steve, and Teague,
Vanessa: vvote: a verifiable voting system. ACM Transactions on
Information and System Security (TISSEC), 18(1):3, 2015.

110

[23] Davis, Adam M, Chmelev, Dmitri, and Clarkson, Michael R:
Civitas: Implementation of a threshold cryptosystem. 2008.

[24] Desmedt, Yvo and Frankel, Yair: Threshold cryptosystems. In
Conference on the Theory and Application of Cryptology, pages
307–315. Springer, 1989.

[25] Eldridge, Mark: A trustworthy electronic voting system for
australian federal elections. arXiv preprint arXiv:1805.02202,
2018.

[26] Esteve, Jordi Barrati, Goldsmith, Ben, and Turner, John:
International experience with e-voting. International Foundation
for Electoral Systems, 2012.

[27] Fiat, Amos and Shamir, Adi: How to prove yourself: Practical
solutions to identification and signature problems. In Conference
on the Theory and Application of Cryptographic Techniques,
pages 186–194. Springer, 1986.

[28] Fischlin, Marc: Trapdoor commitment schemes and their
applications. PhD thesis, Citeseer, 2001.

[29] Fouard, Laure, Duclos, Mathilde, and Lafourcade, Pascal: Survey
on electronic voting schemes. supported by the ANR project
AVOTÉ, 2007.

[30] Fujisaki, Eiichiro and Okamoto, Tatsuaki: Statistical zero
knowledge protocols to prove modular polynomial relations. In
Annual International Cryptology Conference, pages 16–30.
Springer, 1997.

[31] Furukawa, Jun and Sako, Kazue: An efficient scheme for proving
a shuffle. In Annual International Cryptology Conference, pages
368–387. Springer, 2001.

[32] Goggin, Stephen N, Byrne, Michael D, and Gilbert, Juan E:
Post-election auditing: effects of procedure and ballot type on
manual counting accuracy, efficiency, and auditor satisfaction
and confidence. Election Law Journal: Rules, Politics, and Policy,
11(1):36–51, 2012.

[33] Goldwasser, Shafi, Micali, Silvio, and Rackoff, Charles: The
knowledge complexity of interactive proof systems. SIAM Journal
on computing, 18(1):186–208, 1989.

111

[34] Golle, Philippe, Jakobsson, Markus, Juels, Ari, and Syverson,
Paul: Universal re-encryption for mixnets. In Cryptographers’
Track at the RSA Conference, pages 163–178. Springer, 2004.

[35] Halderman, J Alex and Teague, Vanessa: The new south wales
ivote system: Security failures and verification flaws in a live
online election. In International conference on e-voting and
identity, pages 35–53. Springer, 2015.

[36] Harvey, Cole J: Changes in the menu of manipulation: Electoral
fraud, ballot stuffing, and voter pressure in the 2011 russian
election. Electoral studies, 41:105–117, 2016.

[37] Heiberg, Sven, Martens, Tarvi, Vinkel, Priit, and Willemson, Jan:
Improving the verifiability of the estonian internet voting scheme.
In International Joint Conference on Electronic Voting, pages
92–107. Springer, 2016.

[38] Heiberg, Sven and Willemson, Jan: Verifiable internet voting in
estonia. In 2014 6th International Conference on Electronic
Voting: Verifying the Vote (EVOTE), pages 1–8. IEEE, 2014.

[39] Hirt, Martin and Sako, Kazue: Efficient receipt-free voting based
on homomorphic encryption. In International Conference on the
Theory and Applications of Cryptographic Techniques, pages
539–556. Springer, 2000.

[40] Horwitz, Daniel A: A picture’s worth a thousand words: Why
ballot selfies are protected by the first amendment. SMU Sci. &
Tech. L. Rev., 18:247, 2015.

[41] Inguva, Srinivas, Rescorla, Eric, Shacham, Hovav, and Wallach,
Dan S: Source code review of the hart intercivic voting system.
University of California, Berkeley under contract to the
California Secretary of State, 2007.

[42] Jakobsson, Markus and Juels, Ari: Mix and match: Secure
function evaluation via ciphertexts. In International Conference
on the Theory and Application of Cryptology and Information
Security, pages 162–177. Springer, 2000.

[43] Jakobsson, Markus, Juels, Ari, and Rivest, Ronald L: Making
mix nets robust for electronic voting by randomized partial
checking. In USENIX security symposium, pages 339–353. San
Francisco, USA, 2002.

112

[44] Jakobsson, Markus, Sako, Kazue, and Impagliazzo, Russell:
Designated verifier proofs and their applications. In International
Conference on the Theory and Applications of Cryptographic
Techniques, pages 143–154. Springer, 1996.

[45] Juels, Ari, Catalano, Dario, and Jakobsson, Markus:
Coercion-resistant electronic elections. In Proceedings of the 2005
ACM workshop on Privacy in the electronic society, pages 61–70.
ACM, 2005.

[46] Juels, Ari, Catalano, Dario, and Jakobsson, Markus:
Coercion-resistant electronic elections. In Towards Trustworthy
Elections, pages 37–63. Springer, 2010.

[47] Kiniry, Joseph R., Zimmerman, Daniel M., Wagner, Daniel,
Robinson, Philip, Foltzer, Adam, and Morina, Shpatar: The
future of voting: End-to-end verifiable internet voting -
specification and feasibility study. 2015.
https://www.usvotefoundation.org/E2E-VIV.

[48] Koenig, Reto, Haenni, Rolf, and Fischli, Stephan: Preventing
board flooding attacks in coercion-resistant electronic voting
schemes. In IFIP International Information Security Conference,
pages 116–127. Springer, 2011.

[49] Kohno, Tadayoshi, Stubblefield, Adam, Rubin, Aviel D, and
Wallach, Dan S: Analysis of an electronic voting system. In IEEE
Symposium on Security and Privacy, 2004. Proceedings. 2004,
pages 27–40. IEEE, 2004.

[50] Küsters, Ralf and Müller, Johannes: Cryptographic security
analysis of e-voting systems: Achievements, misconceptions, and
limitations. In International Joint Conference on Electronic
Voting, pages 21–41. Springer, 2017.

[51] Küsters, Ralf and Truderung, Tomasz: An epistemic approach to
coercion-resistance for electronic voting protocols. In 2009 30th
IEEE Symposium on Security and Privacy, pages 251–266. IEEE,
2009.

[52] Küsters, Ralf, Truderung, Tomasz, and Vogt, Andreas:
Verifiability, privacy, and coercion-resistance: New insights from
a case study. In 2011 IEEE Symposium on Security and Privacy,
pages 538–553. IEEE, 2011.

113

https://www.usvotefoundation.org/E2E-VIV

[53] Küsters, Ralf, Truderung, Tomasz, and Vogt, Andreas: Clash
attacks on the verifiability of e-voting systems. In 2012 IEEE
Symposium on Security and Privacy, pages 395–409. IEEE, 2012.

[54] Lewis, Sarah Jamie, Pereira, Olivier, and Teague, Vanessa:
Addendum to how not to prove your election outcome. 2019.

[55] Lewis, Sarah Jamie, Pereira, Olivier, and Teague, Vanessa: Ceci
n’est pas une preuve - the use of trapdoor commitments in
bayer-groth proofsand the implications for the verifiabilty of
thescytl-swisspost internet voting system, 2019.

[56] Lewis, Sarah Jamie, Pereira, Olivier, and Teague, Vanessa: How
not to prove your election outcome. 2019.

[57] Li, Huian, Kankanala, Abhishek Reddy, and Zou, Xukai: A
taxonomy and comparison of remote voting schemes. In 2014
23rd International Conference on Computer Communication and
Networks (ICCCN), pages 1–8. IEEE, 2014.

[58] Lindeman, Mark and Stark, Philip B: A gentle introduction to
risk-limiting audits. IEEE Security & Privacy, 10(5):42–49, 2012.

[59] Locher, Philipp, Haenni, Rolf, and Koenig, Reto E: Analysis of
the cryptographic implementation of the swiss post voting protocol.
2019.

[60] Lowry, Svetlana Z and Vora, Poorvi L: Desirable properties of
voting systems. In NIST E2E workshop, 2009.

[61] Mercuri, Rebecca T: Physical verifiability of computer systems.
In 5th International Computer Virus and Security Conference.
Citeseer, 1992.

[62] Meter, Christian: Design of distributed voting systems. arXiv
preprint arXiv:1702.02566, 2017.

[63] Moran, Tal and Naor, Moni: Receipt-free universally-verifiable
voting with everlasting privacy. In Annual International
Cryptology Conference, pages 373–392. Springer, 2006.

[64] Mursi, Mona FM, Assassa, Ghazy MR, Abdelhafez, Ahmed, and
Samra, Kareem M Abo: On the development of electronic voting:
a survey. International Journal of Computer Applications, 61(16),
2013.

114

[65] Neff, C Andrew: A verifiable secret shuffle and its application to
e-voting. In Proceedings of the 8th ACM conference on Computer
and Communications Security, pages 116–125. ACM, 2001.

[66] Neumann, Stephan, Feier, Christian, Volkamer, Melanie, and
Koenig, Reto: Towards a practical jcj/civitas implementation.
INFORMATIK 2013–Informatik angepasst an Mensch,
Organisation und Umwelt, 2013.

[67] Neumann, Stephan and Volkamer, Melanie: Civitas and the real
world: problems and solutions from a practical point of view. In
2012 Seventh International Conference on Availability, Reliability
and Security, pages 180–185. IEEE, 2012.

[68] Niemi, Valtteri and Renvall, Ari: How to prevent buying of votes
in computer elections. In International Conference on the Theory
and Application of Cryptology, pages 164–170. Springer, 1994.

[69] Norden, Lawrence D and Famighetti, Christopher: America’s
Voting Machines at Risk. Brennan Center for Justice at New
York University School of Law, 2015.

[70] Oikeusministeriö: Presidentinvaali 2018 vaaliohjeet nro 2:
Vaalilautakunnan tehtävät.

[71] Oikeusministeriö: Presidentinvaali 2018 vaaliohjeet nro 4:
Ennakkoäänestys kotimaan yleisessä ennakkoäänestyspaikassa.

[72] Oikeusministeriö: Presidentinvaali 2018 vaaliohjeet nro 8:
Vaalipiirilautakunnan tehtävät.

[73] Pieters, Wolter: Verifiability of electronic voting: between
confidence and trust. In Data Protection in a Profiled World,
pages 157–175. Springer, 2010.

[74] Puiggalí, Jordi and Rodríguez-Pérez, Adrià: Defining a national
framework for online voting and meeting its requirements: the
swiss experience. E-Vote-ID 2018, page 82, 2018.

[75] Raimo Ahola, Helsingin vaalipiirilautakunta. Private
communication.

[76] Randell, Brian and Ryan, Peter YA: Voting technologies and
trust. IEEE Security & Privacy, 4(5):50–56, 2006.

[77] Reed, Michael G, Syverson, Paul F, and Goldschlag, David M:
Anonymous connections and onion routing. IEEE Journal on
Selected areas in Communications, 16(4):482–494, 1998.

115

[78] Riemann, Robert: Towards Trustworthy Online Voting:
Distributed Aggregation of Confidential Data. PhD thesis,
Université de Lyon, 2017.

[79] Rivest, Ronald L: On the notion of ‘software independence’in
voting systems. Philosophical Transactions of the Royal Society
A: Mathematical, Physical and Engineering Sciences,
366(1881):3759–3767, 2008.

[80] Rivest, Ronald L and Smith, Warren D: Three voting protocols:
Threeballot, vav, and twin. USENIX/ACCURATE Electronic
Voting Technology (EVT 2007), 2007.

[81] Rjašková, Zuzana: Electronic voting schemes. Diplomová práca,
Bratislava, 2002.

[82] Ryan, Peter and Peacock, Thea: Prêt à Voter: a system
perspective. University of Newcastle upon Tyne, 2005.

[83] Ryan, Peter YA and Schneider, Steve A: Prêt à voter with
re-encryption mixes. In European Symposium on Research in
Computer Security, pages 313–326. Springer, 2006.

[84] Ryan, Peter YA and Teague, Vanessa: Pretty good democracy. In
International Workshop on Security Protocols, pages 111–130.
Springer, 2009.

[85] Sampigethaya, Krishna and Poovendran, Radha: A framework
and taxonomy for comparison of electronic voting schemes.
Computers & Security, 25(2):137–153, 2006.

[86] Scytl: Scytl svote complete verifiability security proof report
document 1.0.
https://www.post.ch/en/business-solutions/e-voting/
publications-and-source-code, visited on 12.8.2019.

[87] Scytl: Swiss online voting system cryptographic proof of
individual verifiability.
https://www.post.ch/en/business-solutions/e-voting/
publications-and-source-code, visited on 12.8.2019.

[88] Shamir, Adi: How to share a secret. Communications of the
ACM, 22(11):612–613, 1979.

[89] Shirazi, Fateme, Neumann, Stephan, Ciolacu, Ines, and
Volkamer, Melanie: Robust electronic voting: Introducing
robustness in civitas. In 2011 International Workshop on

116

https://www.post.ch/en/business-solutions/e-voting/publications-and-source-code
https://www.post.ch/en/business-solutions/e-voting/publications-and-source-code
https://www.post.ch/en/business-solutions/e-voting/publications-and-source-code
https://www.post.ch/en/business-solutions/e-voting/publications-and-source-code

Requirements Engineering for Electronic Voting Systems, pages
47–55. IEEE, 2011.

[90] Smith, Warren D: New cryptographic election protocol with
best-known theoretical properties. In Proc. of Workshop on
Frontiers in Electronic Elections, pages 1–14, 2005.

[91] Springall, Drew, Finkenauer, Travis, Durumeric, Zakir, Kitcat,
Jason, Hursti, Harri, MacAlpine, Margaret, and Halderman, J
Alex: Security analysis of the estonian internet voting system. In
Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security, pages 703–715. ACM, 2014.

[92] Spycher, Oliver, Koenig, Reto, Haenni, Rolf, and Schläpfer,
Michael: A new approach towards coercion-resistant remote
e-voting in linear time. In International Conference on Financial
Cryptography and Data Security, pages 182–189. Springer, 2011.

[93] Stark, Philip B and Wagner, David: Evidence-based elections.
IEEE Security & Privacy, 10(5):33–41, 2012.

[94] State Electoral Office of Estonia: General framework of electronic
voting and implementations thereof at national elections in
estonia, 2017. https://www.valimised.ee/sites/default/
files/uploads/eng/IVXV-UK-1.0-eng.pdf, visited on
31.7.2019.

[95] Stefanelli, Raffaele and Monnat, Denis Moreland Xavier: A
secure e-voting infrastructure. implementation by swiss post.
Second In, page 326, 2017.

[96] Strauss, Charlie EM: A critical review of the triple ballot voting
system, part 2: Cracking the triple ballot encryption.
Unpublished draft, http://cems. browndogs.
org/pub/voting/tripletrouble. pdf, 74, 2006.

[97] Swiss Post: Post e-voting: system documentation.
https://www.post.ch/en/business-solutions/e-voting/
publications-and-source-code, visited on 12.8.2019.

[98] UN General Assembly: Universal declaration of human rights.
302(2), 1948.

[99] United Nations Office on Drugs and Crime: Mechanism for the
review of implementation of the united nations convention
against corruption - state under review: Finland.

117

https://www.valimised.ee/sites/default/files/uploads/eng/IVXV-UK-1.0-eng.pdf
https://www.valimised.ee/sites/default/files/uploads/eng/IVXV-UK-1.0-eng.pdf
https://www.post.ch/en/business-solutions/e-voting/publications-and-source-code
https://www.post.ch/en/business-solutions/e-voting/publications-and-source-code

[100] Verbij, Ruud Paul: Dutch e-voting opportunities. risk assessment
framework based on attacker resources. Master’s thesis,
University of Twente, 2014.

[101] Weber, Stefan G, Araujo, Roberto, and Buchmann, Johannes:
On coercion-resistant electronic elections with linear work. In The
Second International Conference on Availability, Reliability and
Security (ARES’07), pages 908–916. IEEE, 2007.

[102] Yi, Xun and Okamoto, Eiji: Practical remote end-to-end voting
scheme. In International Conference on Electronic Government
and the Information Systems Perspective, pages 386–400.
Springer, 2011.

118

“ Best practices for Internet voting are like best practices for
drunk driving.

– Ronald Rivest ”
A Opinionated advice for policymakers

After looking at the comparison table with schemes like Helios and
Civitas, it may seem like remote e-voting isn’t that bad. It is! This thesis
considered the security of voting schemes; not other security aspects,
such as those related to implementation, development, or procurement.
If you are wondering should your government procure a contract to
develop a remote e-voting system, the answer is almost invariably no.
Even if it is theoretically possible to procure, develop and implement a
remote e-voting system properly, no government to date has been able
to do that.79

Instead of pursuing remote e-voting, governments should pursue
advancements in supervised in-person voting. Cryptographic in-person
voting systems have been experimented in real-world elections. For
example, Prêt à Voter was implemented in Australia [22] and STAR-vote
was implemented in the United States [5]. These case studies illuminate
many practical aspects which are often ignored in academic literature.

Another option is incremental improvements on top of the existing
system. For example, the Finnish voting system would benefit from
cast-as-intended verification. Finland could also introduce compliance
and risk-limiting audits [93] on top of the current system.

In addition, I would like to remind policymakers of the horrid track
record that government certification programs have with regards to
voting equipment (section 1.4) and verifiability requirements (section
5.5). These certification programs stifle competition and technological
progress without providing tangible security benefits [79][93][56]. I
recommend that policymakers do not attempt to define every low-
level minutiae details of a voting system, but instead seek to provide
high-level requirements for evidence-based elections.

79As we noted in section 1, we made an effort to research remote e-voting systems in
the wild and discovered only 3 systems which were (in our opinion) impactful: Australia,
Estonia and Switzerland. We reviewed the schemes underlying these systems in section 5
and concluded that they rely heavily on trusted authorities.

119

B Opinionated thoughts on trust, verifiability and
understandability

As we noted in introduction, trust has two meanings [73]. Throughout
this thesis we have discussed trust from the computer science perspective:
as a negative property which should be minimized. Now we will shift to
the social science perspective and discuss trust as a positive property
which should be maximized – in particular, how can we get the public
to trust a voting system?

Understandability of a voting system is often said to be important to
build trust and increase citizen participation in the democratic process.
A frequently articulated counterpoint against e-voting systems is that a
paper voting system is easy to understand whereas an e-voting system
is difficult to understand. As a blanket statement this is not true. We
will present two counterarguments to demonstrate. The first argument
is more of a pedantic argument demonstrating how it is not true in all
cases. The second argument is more of a practical one.

Firstly, there are different kinds of voting systems. As we have seen
in previous sections, not all paper voting systems are simple but some
are actually rather complicated. There exist also e-voting systems which
are simpler than comparable paper voting systems. For example, we
can take any in-person paper voting system and replace the pen with
a computer to end up with a more understandable and more secure
system than we started off with.

To elaborate on the above example, in the fully paper-based system
the voter expresses their intent with scribbled characters on paper and
returns the ballot before their intent is interpreted. The ambiguity of
written characters causes a significant portion of votes to be disqualified
during the tally. If we replace the pen with a computer, the voter now
expresses their intent on the computer, and the computer prints out a
ballot with their interpreted intent. The voter verifies that their intent
is interpreted correctly and casts the ballot. Note that the voter casts
the ballot after their intent is interpreted. If there is any issue with
the computer, it will be discovered before it causes any damage. With
this system, a voter doesn’t need to understand the inner workings of a
computer any more than they need to understand the inner workings
of a pen. The reason we claim this system to be more understandable
than its fully-paper counterpart is that it removes the need for voters
to understand which handwritten symbols are acceptable and which
are not.

Secondly, voters typically understand paper voting systems at a
rather superficial level: Voters understand how the voting booth and

120

the ballot box provide ballot secrecy. Voters understand how election
officials prevent people from voting multiple times. But if you ask voters
which statistical methods are used to verify the correctness of the tally,
or which methods are used to prevent vote-buying, it becomes very
clear that essential building blocks of a paper voting system are not
common everyday knowledge.

It is our opinion that trust in voting systems does not primarily
arise from understandability. It is definitely a contributing factor, but
primarily trust arises from transparency and the subsequent belief
that independent election monitors are able to verify the correctness
of the tally. It is our opinion that an e-voting system could achieve
this same level of public trust, as long as it provides the verifiable
security properties described in section 3. To put it in other words:
your grandmum doesn’t have to become an expert cryptographer in
order to trust a system like X. She just has to believe that cryptography
experts exist and at least one of them would speak out if this transparent
voting system was not as secure as the election officials claim.

Furthermore, even though verifiability may contribute towards trans-
parency and trust, we do not see verifiability as a means to an end:
verifiability should be a goal in and of itself. In fact, verifiability is
extremely valuable in a voting system even if it decreases the public’s
trust due to its complexity.

As an extreme example, consider the case where a voting system
lacks verifiability, is trusted by the public, and is compromised by a
foreign superpower: the people have lost their democracy and do not
even realize it. Compare that to a hypothetical case where a voting
system has perfect verifiability, thus can not be compromised (without
triggering a new election etc.), and, for whatever reason, is not trusted
by the people.

Clearly, the outcome where people are suspicious of a perfectly
functioning voting system is superior to the outcome where people
are blindly trusting a compromised voting system. We hope that this
outlandish example is enough to support our argument that verifiability
is more important than trust.

This is a contentious topic. Pieters [73] argues that trust in voting
systems arises – not from understandability, transparency or verifiability
– but from familiarity. People tend to trust things which appear familiar
to them. The implication of this view is that trust in a voting system
can be facilitated by designing familiar interfaces and familiar service
paths. In contrast, things like cryptographic verification protocols are
inherently unfamiliar to normal people.

121

C Blockchain and P2P voting schemes

In recent years, P2P (”peer-to-peer”) and blockchain-based solutions
(some of which are P2P) have been hyped as the solution to remote e-
voting. As we noted in section 4, the use case that we see for blockchains
within voting schemes is as an implementation for the public bulletin
board, but there are simpler solutions for that already and it is unclear
what advantages the (much more complex) blockchain solution is sup-
posed to provide. In any case, we decided to perform cursory reviews
on several blockchain and P2P voting schemes.

BitBallot

Riemann [78] describes a P2P voting protocol called BitBallot. Accord-
ing to Riemann, the protocol assumes ”honest authority and honest
peers”. This is clearly unacceptable for a voting protocol, which is why
we did not investigate BitBallot further.

ADVOKAT

ADVOKAT is another P2P protocol described by Riemann in [78]. It is
based on Kademlia (the Distributed Hash Table underlying BitTorrent).
According to Riemann, ADVOKAT does not provide receipt-freeness or
coercion-resistance, and ADVOKAT assumes that the majority of peers
are honest. We decided to not investigate the scheme further because
we are unaware of its intended use case. Since the scheme lacks receipt-
freeness and coercion-resistance, it would be suitable for low-coercive
environments only. However, the main advantage of the scheme is
postulated to be its high availability. We are unaware of a use case which
is simultaneously low-coercive and requires high availability (higher than
what Helios currently provides). Compared to Helios, ADVOKAT has
weaker correctness, verifiability, fairness, and confidentiality properties.
This tradeoff does not seem worth it for higher availability in a low-
coercive environment. Due to these reasons we decided not to look into
ADVOKAT in more detail.

BallotCoin (blockchain voting)

We were unable to locate a white paper or website for this project. It
appears to have been abandoned long ago. Interested readers will find
some descriptions of BallotCoin in [62].

122

BitCongress (blockchain voting)

The website domain for BitCongress appears to have been repurposed
to show blockchain related advertisements. The project appears to be
abandoned. We were unable to find documentation for their voting
scheme or the source code for its implementation.

BitVote (blockchain voting)

The website for BitVote is still accessible, but the latest update appears
to be from 2012. We were unable to find documentation for their
voting scheme or the source code for its implementation. However, the
donation button on their website still works.

VoteCoin (blockchain voting)

The website and whitepaper are still online, but the project appears
to have been abandoned. The whitepaper concerns mainly their Initial
Coin Offering. The only advantage that they postulate their voting
system to have over traditional voting systems is that the user can
divide their vote between multiple candidates. We were unable to
find documentation for their voting scheme or the source code for its
implementation.

Follow My Vote (blockchain voting)

Follow My Vote80 is purported as a verifiable voting scheme which uses
blockchain as a public bulletin board. On some parts of the website
they claim to have open-sourced all of their code. On other parts of
the website they say they will open-source the code in the future. We
visited their GitHub repository, and at the time it contained forks of
unrelated repositories. We were unable to find documentation for their
voting scheme or the source code for its implementation.

Agora (blockchain voting)

Agora81 is another closed-source82 blockchain project which claims to be
working on a verifiable voting system which uses blockchain as a public
bulletin board. The design they present in their whitepaper is nearly

80https://followmyvote.com/ (accessed 30.7.2019)
81We reviewed version 0.2 of Agora’s whitepaper at https://www.agora.vote/ (accessed

30.7.2019)
82Although a GitHub repository for ”Agora voting” exists, it belongs to an entirely

different, unrelated project.

123

incomprehensible. It involves several different blockchains, networks,
applications, and various cryptographic building blocks from academic
voting literature. It seems that they wanted to make a soup with every
possible ingredient. However, they do not motivate the reader with
what they hope to achieve with this design as compared to established
systems like Helios or Civitas. The only comparisons they provide are
in relation to traditional DRE systems; they simply rehash well known
weaknesses of black box electronic voting. We did not see enough merit
to warrant a closer look at their complex scheme.

SecureVote (blockchain voting)

SecureVote83 claims to be another blockchain project for secure voting.
We were unable to find documentation for their voting scheme or the
source code for its implementation (they focus more on marketing their
Initial Coin Offering). They make some wildly untrue claims about
other voting systems, which indicate that they should not be taken
seriously:

• They claim that manipulating votes is easy in any centralized
voting system, even though we have shown several centralized
voting systems where manipulating votes is not easy. ”...no one is
able to change the vote. This is in stark contrast to any centralised
voting system, online or offline, whereby system administrators and
officials can easily manipulate or remove votes from the system.”

• They claim that anonymizing votes is an unsolved problem, even
though a multitude of voting schemes have been published in
academia, which successfully anonymize votes with a variety of
methods, including mix networks, homomorphic encryption, and
blind signatures. ”To date, all commercial attempts to replicate
ballot box voter anonymity in electronic systems have required a
trusted entity to perform the anonymisation, or are expensive, slow,
and unable to suitably scale. Our patent-pending vote anonymising
algorithm, ’Copperfield’, makes digital secret ballot possible with a
very low overhead.”

Voatz (blockchain voting)

Voatz84 is another blockchain-related voting project. They claim to
have been involved in a real world mobile voting experiment in West

83https://secure.vote (accessed 30.7.2019)
84https://voatz.com (accessed 30.7.2019)

124

Virginia with real votes cast through their mobile application. However,
their source code and voting protocol are not available for review.

Voatz is a great example of how commercial vendors can fill the
letter of the law without filling the spirit: what they refer to as a ”paper
audit trail” is literally a physical print of their digital records. If the
digital records are corrupted before printing, the paper records will be
likewise corrupted.

Based on the descriptions on the FAQ page, Voatz servers are all
running the same software, and the voter needs their vote to be recorded
on all of them in order to receive confirmation that their vote has been
recorded. This seems like the worst of both worlds: a single misbehaving
authority can prevent the election from proceeding, and at the same
time, the ”verifiable blockchain” benefits are undermined by running
the same closed-source unverifiable software on all of the servers and
the same closed-source unverifiable software on all of the clients. The
replication of servers provides security benefits only against physical
tampering of the machines – since the same software is running on all of
them, an accidental or intentional flaw in the software can be exploited
to manipulate votes on all servers simultaneously.

Polys (blockchain voting)

Polys is an interesting case. It is backed by reputable Russian company
Kaspersky. However, their website’s ”whitepaper”85 indicates that it is
a traditional ”black box” commercial voting system with a little bit of
blockchain sprinkled on top. To elaborate:

• Their voting protocol is not documented in the whitepaper.

• According to the whitepaper, their source code is not auditable:
”We are preparing to make the Polys protocol code open source and
plan to publish it on GitHub in the near future. We are currently
auditing the Polys protocol code internally.”.

• While they are actively selling their ”black box” software to clients,
they bemoan the dangers of (other providers’) black box voting
software: ”...voting cannot be carried out in black-box mode — the
process should be clear and transparent for all participants”.

• They appear to be blissfully unaware of the progress made in
receipt-free and coercion-resistant voting systems: ”How do you

85The Polys ”whitepaper” is simply a FAQ section on their website (not a PDF), so
it will likely evolve over time. We viewed the website as it appeared on 18/9/2019.
https://docs.polys.me/en/collections/699457-technology-whitepaper

125

protect people from external pressure or the temptation to sell their
votes? Importantly, we still want to have some kind of mechanism
to verify that a vote has been counted — and if such a mechanism
is in place, it can be used for trading in votes.”

• They currently provide no information how a stakeholder could
verify that the election was conducted honestly. Even if the
closed-source platform provided by Polys is operating honestly, the
authorities running the election still have the ability to manipulate
the election result (by creating voter credentials for non-existing
voters) or break ballot secrecy (by decrypting individual votes after
creating tallier credentials for non-existing talliers). They claim
to use a threshold decryption system. Even if honest talliers are
present, Polys’ documentation does not indicate if honest talliers
have a method of verifying whether tallying credentials have been
generated for non-existing talliers or not.

D Reviews of similar prior work

In this appendix we take a closer look at similar prior work from
the perspective of our research questions. We focus on two things:
comparisons and their underlying comparison frameworks. In some
cases we highlight differences between this thesis and similar works. In
many cases the authors’ scope is different from ours and they do not
provide an actual comparison, even though they provide (what could be
construed as) a comparison framework. This appendix exists to justify
why a comparison of voting schemes’ security (this thesis) was needed.

A framework and taxonomy for comparison of electronic vot-
ing schemes

In [85], Sampigethaya and Poovendran present a great taxonomy of
voting schemes and their security properties. Their comparison ta-
ble shares many similarities with Mursi et al.’s [64] comparison table.
Sampigethaya’s and Poovendran’s work is very thorough and they have
compared a wide variety of different schemes. However, the article was
written in 2004, so their comparison does not include modern schemes,
which we compare in this article. Furthermore, their comparison is
limited to remote e-voting schemes, whereas we compare other kinds of
voting schemes as well.

We consider Sampigethaya’s and Poovendran’s comparison frame-
work to be the pinnacle of comparison frameworks for voting schemes.
However, it is not without faults and we hope to surpass it with our

126

framework, by building on top of their ideas and the ideas of everyone
else in the 15 years since Sampigethaya’s and Poovendran’s comparison
framework was written.

The properties under comparison are carved out differently in our
framework compared to theirs – they are comparing familiar concepts
from voting literature, whereas we attempt to carve out properties to
maximize a specific set of goals (section 3 describes our goals and how
the properties in our comparison relate to familiar terminology in voting
literature). In addition, we are more explicit with our assumptions and
the values in our comparison table are less ambiguous (for example,
many cells in their tables have value ”conditionally satisfied”).

A taxonomy and comparison of remote voting schemes

In [57], Li et al. compare a dozen voting schemes’ most important
security properties. Unfortunately, this is not an apples-to-apples
comparison because each scheme is reviewed under a different set of as-
sumptions (which are not documented in the article, but are presumably
discoverable via references).

Furthermore, the comparison has many inconsistencies and the
claims presented by authors are weakly justified. For example, Li et al.
define universal verifiability as simply ”Anyone can verify the final voting
results”. One of the reviewed schemes, Cobra, is described with ”The
final tally is verifiable”. However, in the comparison table the authors
have marked ”No” under ”Universal verifiability” for Cobra. Based
purely on the definition presented and the description of Cobra presented
we would have expected this to be a ”Yes” instead of ”No”. Perhaps
this is an error, or perhaps the tally is verifiable by privileged auditors,
or perhaps there is some other explanation. Making sense of these
conclusions is very difficult when the authors have not properly justified
them. We noticed a similar issue with Civitas’ Universal verifiability.
Although they describe Civitas with ”Tabulation is publicly verifiable”,
the value presented in the comparison table is ”Not Known”. Again, no
justification is provided.

127

Design of distributed voting systems

In [62], Meter describes several important security properties, but
the descriptions are rife with errors.86,87 Meter claims to present a
novel voting scheme with superior security properties compared to
other schemes (comparison table on page 87). However, upon closer
inspection we realized Meter actually doesn’t present a voting scheme.88

It is unclear how Meter produced values for his comparison table.89

Meter provides an additional comparison table on page 44, this
time with many confusing properties instead of the security properties
discussed earlier. As an example, the values for ”Encryption” property
are either ”Public Key” or ”ElGamal”. But the El Gamal cryptosystem
is also a public key cryptosystem, leading us to wonder what the author
wishes to express with this comparison.

Desirable properties of voting systems

In [60], Lowry and Vora offer a good overview into different kinds of
voting systems, with examples of the most famous voting systems of
each kind. Their scope is larger than ours (for example, they cover
usability and accessibility) but they only scratch the surface of most
topics. We have a much narrower scope, but we go in depth to the
topics that we cover.

Lowry and Vora provide good justification for what they see as the
most desirable properties in voting systems. However, they do not treat
their collection of desired properties as a comparison framework, and
they provide very few, limited comparisons.

86For example, Meter erroneously equates coercion freeness with receipt-freeness despite
that he lists [45] and [20] in his references (both of these papers clearly distinguish
coercion-resistance and receipt-freeness).

87As another example, Meter erroneously describes Voter Verifiability in the following
manner: ”The voter herself must be able to verify that her ballot arrived in the ballot box.
This ensures that the voter is sure her vote was counted and was not modified.” However, as
we have demonstrated numerous times, this recorded-as-cast verification does not ensure
that the vote will be counted.

88Section 5, which purportedly contains Meter’s scheme, is actually a discussion on
various high-level ideas, such as the merits of web applications versus native applications,
or the merits of open source versus closed source. Strangely, even though Meter claims to
present a novel voting scheme, he actually does not present a voting scheme at all.

89In the case of Meter’s purported voting scheme, Meter provides some reasoning for the
values, but the claims can not be verified because the scheme is not described anywhere.
In the case of others’ voting schemes, the values presented in the comparison table are
not explicitly justified, but can sometimes be inferred from text in various locations of the
article.

128

Dutch e-voting opportunities. Risk assessment framework
based on attacker resources.

In [100], Verbij provides a good overview into security properties de-
scribed in literature. On page 52, Verbij presents a comparison table.
The comparison covers many relevant security properties, although
many important properties are missing.90 The properties also have
some unnecessary overlap.91 The comparison covers only 3 voting
schemes (Estonia, France and Norway).

Additionally, Verbij proposes a framework for the purpose of identi-
fying ”realistic risks in e-voting schemes” (not directly related to the
security properties discussed earlier). However, it would appear that
their framework is limited to cost estimations of traditional malware
attacks (rather than the general ”realistic risks” scope declared by the
authors).92

On the Development of Electronic Voting: A Survey

In [64], Mursi et al. provide both a comparison framework and a
comparison. The comparison table and related taxonomy of voting
schemes share many similarities with [85]. They present a list of se-
curity requirements discovered in literature, but they do not attempt
to consolidate all of the overlapping and contradicting requirements.93

Furthermore, they claim that their list contains formal definitions, but
it actually contains informal definitions and many of them are vague
and ambiguous.94

There is a comparison table in section 6. However, the authors
do not compare actual schemes to each other – instead they compare
what they call ”classes” of schemes. For example, one class is called
”Hidden vote, authority key threshold”. The authors do not explain how
they derived the values in the table. In addition, the authors claim to

90For example, Verbij doesn’t compare eligibility verification, availability and dispute
resolution properties.

91For example, Verbij presents cast-as-intended and contains-correct-vote as distinct
properties.

92This is our impression based on the authors’ examples of applying the framework. We
do not understand their framework and the article is 195 pages long. We may be wrong,
but in any case, their framework is fundamentally different from ours.

93For example, Mursi et al. require that participation rolls should be public (”Verifiable
participation”) and, at the same time, participation rolls should be secret (”Incoercibility”).
Both of these outcomes can not be desirable simultaneously. To be fair, Mursi et al.
acknowledge that the list contains contradictory requirements.

94As an example of an ambiguous definition, Mursi et al. define Verifiability as ”Voters
shall be able to verify that their votes are correctly counted for in the final tally (universal
or individual)”. However, they do not define what they mean by these terms.

129

present a ”Comparative analysis of schemes” in section 8, but section 8
does not actually contain a comparative analysis of schemes (it contains
descriptions of schemes without making comparisons).

Public Evidence From Secret Ballots

In [8], Bernhard et al. call for evidence-based elections. The authors
describe important security properties, provide case reviews of voting
systems, explain common building blocks in voting schemes, and sum-
marize their findings in a polished comparison table. In other words,
their structure and scope is very similar to ours. However, the article is
rather short, so they only scratch the surface of most topics.

The results presented in their comparison table appear to contain
several errors. For example, they erroneously claim that Civitas provides
cast-as-intended verifiability, even though it is disabled by design, as we
explained in section 5.9. As another example, they erroneously claim
that ThreeBallot provides count-as-recorded verifiability, even though
it does not95. These claims are not justified in the article in any way.
Even the references the authors provide for ThreeBallot and Civitas do
not support these claims. We reached out to one of the authors and
did not hear back.

Furthermore, some of the properties in their comparison are ambigu-
ous. For example, one property is called ”take-home evidence”. That
could mean many things depending on the author and the term appears
only once in the entire article – there is no description or references. The
authors also excluded some crucial properties from the comparison with
dubious justification: ”certain features [like] availability are excluded,
as these factors impact all systems in roughly equivalent ways”. As we
clearly demonstrated96, this claim is false. Availability does not impact
all systems in roughly equivalent ways and it is a crucial feature which
must be considered in any holistic comparison.

95As we noted in section 5.2., ThreeBallot is vulnerable to a wide range of collusive
attacks.

96For example, we showed that Civitas has severe availability issues, which do not affect
the Finnish paper voting scheme. We refer to sections 3, 5 and 6 for details.

130

Source code review of the Hart InterCivic voting system

In [41], Inguva et al. provide an excellent threat model and detailed
classifications for attack types, attacker types, and many related subjects.
They provide a great framework for analyzing a voting system, although
their framework is tailored towards one specific voting system which
they analyze, and their analysis involves many practical aspects which
are outside of our scope.

Survey on electronic voting schemes

In [29], Fouard et al. present a great overview into different security
properties defined in literature. They even documented how the same
terms are defined differently in different works. Unfortunately, they
overlook some crucial properties: dispute resolution is not addressed in
any way and coercion-resistance is presented as if it were equivalent to
robustness, for some reason. After listing all these different definitions,
the authors consolidate them into a coherent comparison framework
(although they do not justify their decisions in this step).

There is a comparison table on page 61. Unfortunately, the authors
do not present schemes under unified assumptions – instead, each scheme
is evaluated under a different set of assumptions (omitted from the
article, but presumably articulated in the referenced articles). As such,
this is not an apples-for-apples comparison. Additionally, the table has
values which are difficult to interpret without substantial research.97

Furthermore, as the article was published in 2007, the selection of
schemes for comparison is markedly different from ours.

97For example, many cells in Fouard et al.’s comparison table have value ”A”, as in
”attacks found”. How significant are these attacks? Do they entirely break the property in
question or are they minor infractions in special circumstances? Impossible to say without
substantial research.

131

Towards Trustworthy Online Voting: Distributed Aggrega-
tion of Confidential Data

In [78], Riemann covers most of the important voting security concepts
in literature, but does not consolidate them into a coherent framework.
Properties are presented as disparate concepts even when they have
obvious overlap98. Furthermore, some of the definitions presented by
Riemann are ambiguous and we disagree with some of them.99

Although Riemann does cover important voting security concepts,
he does not use these concepts to compare the security of different
voting schemes. This point is not a criticism of his work; his scope and
focus is simply different than ours.

98For example, Riemann defines ”individual verifiability” in a short description. Later,
Riemann defines ”End-to-end verifiability” as consisting of ”cast as intended”, ”recorded as
cast” and ”tallied as recorded”. Then Riemann defines ”software independence” in abstract
terms. As we demonstrated in section 3, these terms have significant overlap and it is
unhelpful to the reader to present them as disparate concepts.

99For example, end-to-end verifiability is usually defined as the combination of individual
verifiability and universal verifiability, but Riemann does not include universal verifiability
in his definition for end-to-end verifiability. No justification is given.

132

	Introduction
	Different types of voting schemes
	Failure modes
	Trust
	Verifiability
	Disposition of this thesis

	Research approach
	Research questions
	Prior work
	Contributions
	Scope limitations
	Exotic ballots
	Soundness of cryptographic building blocks
	Man-in-the-middle attacks
	Cost analyses

	Research methods

	Comparison framework
	Goals
	Threat model
	Assumptions
	A line in the sand
	Adversaries are computationally bounded
	Voters are unable to produce unique ballots
	Voter registration is not vulnerable to impersonation

	Summary of consolidated properties
	Confidentiality
	Ballot secrecy
	Receipt-freeness
	Coercion-resistance
	Fairness

	Integrity
	Individual verifiability
	Universal verifiability
	Eligibility verifiability
	Dispute resolution

	Availability
	Denial-of-service resistance

	Building blocks of voting schemes
	Code voting
	Public Bulletin Board
	Randomized encryption
	Re-encryption
	Threshold cryptosystem
	Plaintext Equivalence Test
	Zero-knowledge proofs
	Fiat-Shamir technique
	Designated verifier proofs
	Homomorphic encryption
	Mix networks
	Randomized Partial Checking

	Case reviews of voting schemes
	In-person paper voting in Finland
	In-person paper voting with Floating Receipts
	In-person paper voting with Prêt à Voter
	Remote paper voting in Switzerland
	Remote e-voting in Switzerland
	Remote e-voting in Australia
	Remote e-voting in Estonia
	Remote e-voting with Helios
	Remote e-voting with Civitas

	Comparison
	Comparison table
	Guidance for interpreting results
	Key takeaways from the comparison
	Future work

	Acknowledgements
	References
	Opinionated advice for policymakers
	Opinionated thoughts on trust, verifiability and understandability
	Blockchain and P2P voting schemes
	Reviews of similar prior work

